A175473 Decimal expansion of the absolute value of the abscissa of the local minimum of the Gamma function in the interval [ -2,-1].
1, 5, 7, 3, 4, 9, 8, 4, 7, 3, 1, 6, 2, 3, 9, 0, 4, 5, 8, 7, 7, 8, 2, 8, 6, 0, 4, 3, 6, 9, 0, 4, 3, 4, 6, 1, 2, 6, 5, 5, 0, 4, 0, 8, 5, 9, 1, 1, 6, 8, 4, 6, 1, 4, 9, 9, 3, 0, 1, 4, 2, 5, 6, 8, 7, 9, 7, 0, 2, 0, 3, 4, 4, 3, 9, 6, 5, 1, 4, 0, 4, 8, 1, 0, 4, 7, 3, 2, 3, 9, 8, 2, 5, 1, 8, 8, 5, 6, 2, 8, 1, 8, 7, 7, 0
Offset: 1
Examples
Gamma(-1.5734984731623904587782860437..) = 2.3024072583396801358235820396..
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, page 427.
Links
- Eric Weisstein's World of Mathematics, Gamma Function.
- Wikipedia, Particular values of the Gamma function.
Programs
-
Mathematica
x /. FindRoot[ PolyGamma[0, x] == 0, {x, -3/2}, WorkingPrecision -> 110] // Abs // RealDigits // First // Take[#, 105]& (* Jean-François Alcover, Jan 21 2013 *)
-
PARI
solve(x=1.5,1.6,psi(-x)) \\ Charles R Greathouse IV, Jul 19 2013
Comments