A175474 Decimal expansion of the absolute value of the abscissa of the local maximum of the Gamma function in the interval [ -3,-2].
2, 6, 1, 0, 7, 2, 0, 8, 6, 8, 4, 4, 4, 1, 4, 4, 6, 5, 0, 0, 0, 1, 5, 3, 7, 7, 1, 5, 7, 1, 8, 7, 2, 4, 2, 0, 7, 9, 5, 1, 0, 7, 4, 0, 1, 0, 8, 7, 3, 4, 8, 0, 2, 4, 4, 1, 9, 0, 6, 5, 0, 8, 7, 5, 6, 0, 3, 7, 5, 7, 4, 7, 3, 3, 1, 3, 8, 3, 8, 6, 3, 7, 5, 6, 5, 3, 6, 1, 5, 4, 9, 6, 2, 5, 2, 7, 0, 7, 1, 1, 9, 5, 9, 8, 3
Offset: 1
Examples
Gamma(-2.6107208684441446500015377157..) = -0.8881363584012419200955280294..
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, page 427.
Links
- Eric Weisstein's World of Mathematics, Gamma Function.
- Wikipedia, Particular values of the Gamma function.
Programs
-
Mathematica
x /. FindRoot[ PolyGamma[0, x] == 0, {x, -5/2}, WorkingPrecision -> 105] // Abs // RealDigits // First (* Jean-François Alcover, Jan 21 2013 *)
-
PARI
solve(x=2.6,2.7,psi(-x)) \\ Charles R Greathouse IV, Jul 19 2013
Comments