This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175476 #17 Apr 10 2024 09:14:47 %S A175476 5,5,6,8,3,2,7,9,9,6,8,3,1,7,0,7,8,4,5,2,8,4,8,1,7,9,8,2,1,1,8,8,3,5, %T A175476 7,0,2,0,1,3,6,2,4,3,9,0,2,8,3,2,4,3,9,1,0,7,5,3,6,7,5,8,1,8,8,2,9,7, %U A175476 4,5,5,3,3,6,4,7,7,9,5,7,0,2,2,1,2,1,7,7,6,8,7,3,8,4,7,0,8,4,9,4,0,9,7,0,6 %N A175476 Decimal expansion of Pi^(3/2). %C A175476 Log(Pi^(3/2)) = 1.5*log(Pi) = 1.5 * A053510 = 1.7170948... %H A175476 Marc Chamberland and Armin Straub, <a href="https://doi.org/10.1016/j.aam.2013.07.003">On gamma quotients and infinite products</a>, Advances in Applied Mathematics, Vol. 51, No. 5 (2013), pp. 546-562, see pp. 555-556; <a href="http://arxiv.org/abs/1309.3455">arXiv preprint</a>, arXiv:1309.3455 [math.NT], 2013, see pp. 9-10. %H A175476 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A175476 Equals A000796 * A002161 = A002388 / A002161. %F A175476 From _Vaclav Kotesovec_, Dec 10 2015: (Start) %F A175476 Equals Gamma(3/14)*Gamma(5/14)*Gamma(13/14)/2. %F A175476 Equals Gamma(1/14)*Gamma(9/14)*Gamma(11/14)/4. %F A175476 (End) %F A175476 Equals Integral_{x=-oo..oo, y=-oo..oo, z=-oo..oo} exp(-x^2 - y^2 - z^2) dx dy dz. - _Ilya Gutkovskiy_, Apr 10 2024 %e A175476 5.5683279968317078452848179.. %p A175476 Pi^(3/2) ; evalf(%) ; %t A175476 RealDigits[Pi^(3/2), 10, 120][[1]] (* _Amiram Eldar_, Jun 13 2023 *) %Y A175476 Cf. A000796, A002161, A002388, A053510. %K A175476 cons,easy,nonn %O A175476 1,1 %A A175476 _R. J. Mathar_, May 25 2010