This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175497 #88 Jul 12 2023 11:09:05 %S A175497 0,6,30,35,84,180,204,210,297,330,546,840,1170,1189,1224,1710,2310, %T A175497 2940,2970,3036,3230,3900,4914,6090,6930,7134,7140,7245,7440,8976, %U A175497 10710,12654,14175,14820,16296,16380,17220,19866,22770,25172,25944,29103 %N A175497 Numbers k with the property that k^2 is a product of two distinct triangular numbers. %C A175497 From _Robert G. Wilson v_, Jul 24 2010: (Start) %C A175497 Terms in the i-th row are products contributed with a factor A000217(i): %C A175497 (1) 0, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, ... %C A175497 (2) 30, 297, 2940, 29103, 288090, 2851797, 28229880, ... %C A175497 (3) 84, 1170, 16296, 226974, 3161340, ... %C A175497 (4) 180, 3230, 57960, 1040050, 18662940, ... %C A175497 (5) 330, 7245, 159060, 3492075, 76666590, ... %C A175497 (6) 546, 14175, 368004, 9553929, ... %C A175497 (7) 840, 25172, 754320, 22604428, ... %C A175497 (8) 210, 1224, 7134, 41580, 242346, 1412496, 8232630, 47983284, ... %C A175497 (9) 1710, 64935, 2465820, 93636225, ... %C A175497 (10) 2310, 96965, 4070220, ... %C A175497 (11) 3036, 139590, 6418104, ... %C A175497 (12) 3900, 194922, 9742200, ... %C A175497 (13) 4914, 265265, 14319396, ... %C A175497 (14) 6090, 353115, 20474580, ... %C A175497 (15) 7440, 461160, 28584480, ... %C A175497 (End) %C A175497 Numbers m with property that m^2 is a product of two distinct triangular numbers T(i) and T(j) such that i and j are in the same row of the square array A(n, k) defined in A322699. - _Onur Ozkan_, Mar 17 2023 %H A175497 R. J. Mathar, <a href="/A175497/b175497.txt">Table of n, a(n) for n = 1..1000</a> replacing a b-file of _Robert G. Wilson v_ of 2010. %H A175497 R. J. Mathar, <a href="/A175497/a175497.pdf">OEIS A175497</a>, Mar 16 2023 %H A175497 Project Euler, <a href="https://projecteuler.net/problem=833">Problem 833. Square Triangle Products</a>. %H A175497 M. Ulas, <a href="https://arxiv.org/abs/0811.2477">On certain diophantine equations related to triangular and tetrahedral numbers</a>, arXiv:0811.2477 [math.NT], 2008. Theorem 5.6. %F A175497 a(n)^2 = A169836(n). - _R. J. Mathar_, Mar 12 2023 %p A175497 isA175497 := proc(n) %p A175497 local i,Ti,Tj; %p A175497 if n = 0 then %p A175497 return true; %p A175497 end if; %p A175497 for i from 1 do %p A175497 Ti := i*(i+1)/2 ; %p A175497 if Ti > n^2 then %p A175497 return false; %p A175497 else %p A175497 Tj := n^2/Ti ; %p A175497 if Tj <> Ti and type(Tj,'integer') then %p A175497 if isA000217(Tj) then # code in A000217 %p A175497 return true; %p A175497 end if; %p A175497 end if; %p A175497 end if; %p A175497 end do: %p A175497 end proc: %p A175497 for n from 0 do %p A175497 if isA175497(n) then %p A175497 printf("%d,\n",n); %p A175497 end if; %p A175497 end do: # _R. J. Mathar_, May 26 2016 %t A175497 triangularQ[n_] := IntegerQ[Sqrt[8n + 1]]; %t A175497 okQ[n_] := Module[{i, Ti, Tj}, If[n == 0, Return[True]]; For[i = 1, True, i++, Ti = i(i+1)/2; If[Ti > n^2, Return[False], Tj = n^2/Ti; If[Tj != Ti && IntegerQ[Tj], If[ triangularQ[Tj], Return[True]]]]]]; %t A175497 Reap[For[k = 0, k < 30000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Jun 13 2023, after _R. J. Mathar_ *) %o A175497 (Python) %o A175497 from itertools import count, islice, takewhile %o A175497 from sympy import divisors %o A175497 from sympy.ntheory.primetest import is_square %o A175497 def A175497_gen(startvalue=0): # generator of terms >= startvalue %o A175497 return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k**2//d<<3)+1), takewhile(lambda d:d**2<k,divisors(k**2)))),count(max(startvalue,0))) %o A175497 A175497_list = list(islice(A175497_gen(),20)) # _Chai Wah Wu_, Mar 13 2023 %o A175497 (Python) %o A175497 def A175497_list(n): %o A175497 def A322699_A(k, n): %o A175497 p, q, r, m = 0, k, 4*k*(k+1), 0 %o A175497 while m < n: %o A175497 p, q, r = q, r, (4*k+3)*(r-q) + p %o A175497 m += 1 %o A175497 return p %o A175497 def a(k, n, j): %o A175497 if n == 0: return 0 %o A175497 p = A322699_A(k, n)*(A322699_A(k, n)+1)*(2*k+1) - a(k, n-1, 1) %o A175497 q = (4*k+2)*p - A322699_A(k, n)*(A322699_A(k, n)+1)//2 %o A175497 m = 1 %o A175497 while m < j: p, q = q, (4*k+2)*q - p; m += 1 %o A175497 return p %o A175497 A = set([a(k, 1, 1) for k in range(n+1)]) %o A175497 k, l, m = 1, 1, 2 %o A175497 while True: %o A175497 x = a(k, l, m) %o A175497 if x < max(A): %o A175497 A |= {x} %o A175497 A = set(sorted(A)[:n+1]) %o A175497 m += 1 %o A175497 else: %o A175497 if m == 1 and l == 1: %o A175497 if k > n: %o A175497 return sorted(A) %o A175497 k += 1 %o A175497 elif m > 1: %o A175497 l += 1; m = 1 %o A175497 elif l > 1: %o A175497 k += 1; l, m = 1, 1 %o A175497 # _Onur Ozkan_, Mar 15 2023 %Y A175497 From _Robert G. Wilson v_, Jul 24 2010: (Start) %Y A175497 A001109 (with the exception of 1), A011945, A075848 and A055112 are all proper subsets. %Y A175497 Many terms are in common with A147779. %Y A175497 Cf. A001108, A132596, A007654, A001108, A132593. (End) %Y A175497 Cf. A152005 (two distinct tetrahedral numbers). %K A175497 nonn %O A175497 1,2 %A A175497 _Zak Seidov_, May 30 2010