This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175499 #22 Oct 18 2024 17:16:21 %S A175499 1,2,-1,3,4,-5,6,-4,5,-3,7,-8,9,-2,8,-10,11,-6,10,-14,12,-7,13,-12,14, %T A175499 -13,15,-11,16,-19,17,-9,18,-21,19,-17,20,-18,21,-15,22,-26,23,-16,24, %U A175499 -29,25,-22,27,-23,26,-25,28,-27,29,-28,30,-24,31,-35,32,33,-62,34,-31,35,-34,36,-33,37,-39,38,-32,39,-42,40,-36 %N A175499 a(n) = A175498(n+1)-A175498(n). %C A175499 No integer occurs in this sequence more than once, by definition. Is this sequence a permutation of the nonzero integers? %H A175499 Chai Wah Wu, <a href="/A175499/b175499.txt">Table of n, a(n) for n = 1..4999</a> %t A175499 a[1] = 0; d[1] = 1; k = 1; z = 10000; zz = 120; %t A175499 A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}]; %t A175499 c[k_] := Complement[Range[-z, z], diff[k]]; %t A175499 T[k_] := -a[k] + Complement[Range[z], A[k]] %t A175499 Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, %t A175499 d[k + 1] = h, k = k + 1}, {i, 1, zz}]; %t A175499 u = Table[a[k], {k, 1, zz}] (* A257884 *) %t A175499 Table[d[k], {k, 1, zz}] (* A175499 *) %t A175499 (* _Clark Kimberling_, May 13 2015 *) %o A175499 (Python) %o A175499 A175499_list, l, s, b = [1], 2, 3, set() %o A175499 for n in range(2, 10**2): %o A175499 i, j = s, s-l %o A175499 while True: %o A175499 if not (i in b or j in A175499_list): %o A175499 A175499_list.append(j) %o A175499 b.add(i) %o A175499 l = i %o A175499 while s in b: %o A175499 b.remove(s) %o A175499 s += 1 %o A175499 break %o A175499 i += 1 %o A175499 j += 1 # _Chai Wah Wu_, Dec 15 2014 %o A175499 (Haskell) %o A175499 a175499 n = a175499_list !! (n-1) %o A175499 a175499_list = zipWith (-) (tail a175498_list) a175498_list %o A175499 -- _Reinhard Zumkeller_, Apr 25 2015 %Y A175499 Cf. A175498, A257884, A131389. %K A175499 sign %O A175499 1,2 %A A175499 _Leroy Quet_, May 31 2010 %E A175499 More terms from _Sean A. Irvine_, Jan 27 2011