A175507 Numbers such that each digit from 0 to 9 appears at least 7 times in the digits of their divisors.
7980, 8190, 9360, 10920, 11760, 11880, 12870, 13230, 13860, 14820, 15960, 16380, 16740, 17640, 17940, 18216, 18270, 18360, 18720, 18810, 18900, 19040, 19080, 19140, 19656, 19740, 20196, 20580, 20790, 20880, 21168, 21560, 21840, 22176
Offset: 1
Examples
5460 is not in the sequence because the divisors, 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 15, 20, 21, 26, 28, 30, 35, 39, 42, 52, 60, 65, 70, 78, 84, 91, 105, 130, 140, 156, 182, 195, 210, 260, 273, 364, 390, 420, 455, 546, 780, 910, 1092, 1365, 1820, 2730, 5460, contain the digit 7 only 6 times (namely once in 7, 70, 78, 273, 780 and 2730), which is not enough.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Erich Friedman, What's Special About This Number? (See entry 7980.)
Crossrefs
Cf. A059436.
Programs
-
Mathematica
fQ[n_] := Block[{s = Transpose@ Tally[ Sort[ Flatten[ IntegerDigits@# & /@ Divisors@ n]]]}, First@ s == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} && Min@ Last@ s > 6]; k = 1; lst = {}; While[k < 22319, If[ fQ@k, AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jul 31 2010 *)
Extensions
More terms from Robert G. Wilson v, Jul 31 2010