A175549 Number of triples (a, b, c) with gcd(a, b, c) = 1 and -n <= a,b,c <= n.
0, 26, 98, 290, 578, 1154, 1730, 2882, 4034, 5762, 7490, 10370, 12674, 16706, 20162, 24770, 29378, 36290, 41474, 50114, 57026, 66242, 74882, 87554, 96770, 111170, 123266, 138818, 152642, 172802, 186626, 209666, 228098, 251138, 271874, 299522
Offset: 0
Keywords
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[If[n>0, 8 * Sum[MoebiusMu[k] * ((Floor[n/k] + 1)^3 - 1), {k, 1, n}] - 24 * Sum[EulerPhi[k], {k, 1, n}] - 6, 0], {n, 0, 35}] (* Indranil Ghosh, Mar 11 2017 *)
-
PARI
a(n)=if(n>0,8*sum(k=1,n,moebius(k)*((n\k+1)^3-1))-24*sum(k=1,n,eulerphi(k))-6)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A175549(n): if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A175549(k1) j, k1 = j2, n//j2 return 4*n*(n - 1)*(2*n + 5)-c+26*(j-1)# Chai Wah Wu, Mar 30 2021
Formula
a(n) = 2*n*(4*n^2 + 6*n + 3) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021
Extensions
Edited by Charles R Greathouse IV, Jul 19 2010