cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175552 Numbers k such that the digit sum of 167^k is divisible by k.

Original entry on oeis.org

1, 2, 5, 7, 22, 490, 724, 778, 868, 994, 1109, 1390, 1415, 1462, 1642, 1739, 1829, 2146, 2362, 3136, 4954, 6437, 6628, 7103, 11200, 12424, 12863, 14242, 14249, 15059, 15203, 16222, 17140, 18353, 19192, 21233, 22853, 24106, 24574, 24833, 26896, 27652, 28253, 30323, 31306, 31594, 32386, 33790, 34985, 36184, 36310, 40673, 42196, 43931, 45911, 45983
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2010

Keywords

Comments

From Donovan Johnson, Dec 03 2010: (Start)
To generate the additional terms I used PFGW.exe to get the decimal expansion for each number of the form 167^n (n <= 50000). Then I wrote a program in powerbasic to read the pfgw.out file and get the digit sums.
The digit sum is 10 times the n value for terms a(5) to a(56). (End)
I believe that this sequence is finite. - N. J. A. Sloane, Dec 05 2010

Crossrefs

Sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552.

Programs

  • Mathematica
    Select[Range[10000], Mod[Total[IntegerDigits[167^#]], #] == 0 &]

Extensions

a(25)-a(56) from Donovan Johnson, Dec 03 2010