A175553 Product of first k triangular numbers divided by the sum of first k triangular numbers is an integer.
1, 4, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96
Offset: 1
Keywords
Examples
For k=4 we have 1*3*6*10 /(1+3+6+10) = 9 so k=4 belongs to the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A133653. - John W. Layman, Jul 10 2010
Programs
-
Maple
A006472 := proc(n) n!*(n-1)!/2^(n-1) ; end proc: A000292 := proc(n) binomial(n+2,3) ; end proc: for n from 1 to 200 do a := A006472(n+1)/A000292(n) ; if type(a,'integer') then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 28 2010
-
Mathematica
fQ[n_] := Mod[6n!(n - 1)!, (n + 2)2^n ] == 0; Select[Range@ 96, fQ@# &] (* Robert G. Wilson v, Jun 29 2010 *)
Formula
Extensions
More terms from R. J. Mathar and Robert G. Wilson v, Jun 28 2010
Comments