cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175553 Product of first k triangular numbers divided by the sum of first k triangular numbers is an integer.

Original entry on oeis.org

1, 4, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 26 2010

Keywords

Comments

Numbers k such that (1*3*6*10* ... *(k*(k+1)/2)) / (1+3+6+10+ ... +(k*(k+1)/2)) is an integer. What if, instead of triangular numbers, we use squares, 1*4*...*(k*k) / (1+4+...+k*k); odd numbers, 1*3*...*(2*k-1) / (1+3+...+(2*k-1)); or Fibonacci numbers, F(1)* ... *F(k) / (F(1)+ ... + F(k))?
It appears that the corresponding sequence for the Fibonacci numbers is given in A133653. - John W. Layman, Jul 10 2010
k > 6 is in this sequence if and only if k+2 is composite. - Robert Israel, Nov 04 2021

Examples

			For k=4 we have 1*3*6*10 /(1+3+6+10) = 9 so k=4 belongs to the sequence.
		

Crossrefs

Cf. A133653. - John W. Layman, Jul 10 2010

Programs

  • Maple
    A006472 := proc(n) n!*(n-1)!/2^(n-1) ; end proc:
    A000292 := proc(n) binomial(n+2,3) ; end proc:
    for n from 1 to 200 do a := A006472(n+1)/A000292(n) ; if type(a,'integer') then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 28 2010
  • Mathematica
    fQ[n_] := Mod[6n!(n - 1)!, (n + 2)2^n ] == 0; Select[Range@ 96, fQ@# &] (* Robert G. Wilson v, Jun 29 2010 *)

Formula

{k: A006472(k+1)/A000292(k) in Z}. - R. J. Mathar, Jun 28 2010

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Jun 28 2010