A175571 Decimal expansion of the Dirichlet beta function of 5.
9, 9, 6, 1, 5, 7, 8, 2, 8, 0, 7, 7, 0, 8, 8, 0, 6, 4, 0, 0, 6, 3, 1, 9, 3, 6, 8, 6, 3, 0, 9, 7, 5, 2, 8, 1, 5, 1, 1, 3, 9, 5, 5, 2, 9, 3, 8, 8, 2, 6, 4, 9, 4, 3, 2, 0, 7, 9, 8, 3, 2, 1, 5, 1, 2, 4, 4, 6, 2, 8, 6, 5, 0, 1, 8, 2, 7, 4, 8, 1, 9, 2, 8, 9, 6, 5, 9, 8, 3, 2, 2, 7, 0, 5, 2, 4, 4, 7, 5, 5, 9, 9, 0, 8, 0
Offset: 0
Examples
0.99615782807708806400631936...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
- Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
- Wikipedia, Dirichlet beta function.
Crossrefs
Programs
-
Maple
DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(5) ; x := evalf(x) ;
-
Mathematica
RealDigits[ DirichletBeta[5], 10, 105] // First (* Jean-François Alcover, Feb 20 2013, updated Mar 14 2018 *)
-
PARI
5*Pi^5/1536 \\ Charles R Greathouse IV, Jan 31 2018
-
PARI
beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x beta(5) \\ Charles R Greathouse IV, Jan 31 2018
Formula
Equals 5*Pi^5/1536 = Sum_{n>=1} A101455(n)/n^5, where Pi^5 = A092731. [corrected by R. J. Mathar, Feb 01 2018]
Equals Sum_{n>=0} (-1)^n/(2*n+1)^5. - Jean-François Alcover, Mar 29 2013
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^5)^(-1). - Amiram Eldar, Nov 06 2023
Comments