This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175572 #39 Feb 16 2025 08:33:12 %S A175572 9,8,8,9,4,4,5,5,1,7,4,1,1,0,5,3,3,6,1,0,8,4,2,2,6,3,3,2,2,8,3,7,7,8, %T A175572 2,1,3,1,5,8,6,0,8,8,7,0,6,2,7,3,3,9,1,0,7,8,1,9,9,2,4,0,1,6,3,9,0,1, %U A175572 5,1,9,4,6,9,8,0,1,8,1,9,6,4,1,1,9,1,0,4,6,8,9,9,9,7,9,9,9,3,3,7,8,5,6,2,1 %N A175572 Decimal expansion of the Dirichlet beta function of 4. %C A175572 This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4). %D A175572 L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (308). %H A175572 G. C. Greubel, <a href="/A175572/b175572.txt">Table of n, a(n) for n = 0..10000</a> %H A175572 Mark W. Coffey, <a href="https://arxiv.org/abs/1701.07064">Summatory relations and prime products for the Stieltjes constants and other related results</a>, arXiv:1701.07064, proposition 5. %H A175572 Richard J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015. %H A175572 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>. %H A175572 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>. %F A175572 Equals Sum_{n>=1} A101455(n)/n^4. [corrected by _R. J. Mathar_, Feb 01 2018] %F A175572 Equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - _Jean-François Alcover_, Jun 11 2015 %F A175572 Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^4)^(-1). - _Amiram Eldar_, Nov 06 2023 %e A175572 0.988944551741105336108422633... %p A175572 DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ; %t A175572 RealDigits[ DirichletBeta[4], 10, 105] // First (* _Jean-François Alcover_, Feb 11 2013, updated Mar 14 2018 *) %o A175572 (PARI) beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x %o A175572 beta(4) \\ _Charles R Greathouse IV_, Jan 31 2018 %Y A175572 Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)). %Y A175572 Cf. A101455. %K A175572 cons,easy,nonn %O A175572 0,1 %A A175572 _R. J. Mathar_, Jul 15 2010