cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175615 Decimal expansion of sinh(Pi)/(4*Pi).

This page as a plain text file.
%I A175615 #21 Feb 11 2023 18:44:43
%S A175615 9,1,9,0,1,9,4,7,7,5,9,3,7,4,4,4,3,0,1,7,3,9,2,4,3,7,3,0,0,7,0,6,5,1,
%T A175615 6,6,6,2,6,7,8,9,0,8,6,7,0,6,9,0,7,5,6,9,3,6,9,5,0,0,8,9,8,3,8,9,3,6,
%U A175615 1,8,3,1,0,2,7,7,5,5,5,1,8,3,0,3,3,1,3,9,8,1,6,4,7,5,8,0,7,5,5,8,8,2,1,8,8
%N A175615 Decimal expansion of sinh(Pi)/(4*Pi).
%H A175615 R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products...</a>, arXiv:0903.2514.
%F A175615 Equals product_{n >= 2} (1-n^(-4)).
%F A175615 Equals A156648/4.
%F A175615 Equals exp(Sum_{j>=1} (1 - zeta(4*j))/j). - _Vaclav Kotesovec_, Apr 27 2020
%F A175615 Equals 1/(2*Gamma(2-i)*Gamma(2+i)). - _Amiram Eldar_, May 28 2021
%e A175615 0.91901947759...
%p A175615 sinh(Pi)/4/Pi; evalf(%) ;
%t A175615 RealDigits[Sinh[Pi]/(4Pi),10,120][[1]] (* _Harvey P. Dale_, Feb 11 2023 *)
%o A175615 (PARI) exp(suminf(j=1, (1 - zeta(4*j))/j)) \\ _Vaclav Kotesovec_, Apr 27 2020
%Y A175615 Cf. A109219, A156648, A144663, A175617, A175619.
%K A175615 cons,easy,nonn
%O A175615 0,1
%A A175615 _R. J. Mathar_, Jul 26 2010