cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175616 Decimal expansion of product_{n>=2} (1-n^(-5)).

Original entry on oeis.org

9, 6, 3, 2, 5, 6, 5, 6, 1, 7, 5, 7, 5, 5, 9, 0, 9, 7, 3, 7, 3, 0, 4, 6, 0, 3, 4, 8, 8, 3, 9, 7, 5, 1, 9, 5, 5, 4, 3, 5, 2, 0, 7, 5, 7, 8, 5, 3, 4, 2, 2, 6, 3, 7, 3, 9, 5, 1, 6, 8, 8, 5, 0, 4, 2, 7, 6, 9, 4, 4, 2, 1, 8, 8, 7, 6, 7, 8, 1, 3, 0, 4, 6, 3, 6, 3, 5, 8, 0, 4, 6, 8, 6, 0, 9, 7, 9, 6, 9, 8, 7, 0, 9, 6, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.96325656175755909737304603488397519554352075785342263739516...
		

Crossrefs

Programs

  • Mathematica
    g[k_] := Gamma[Root[1 - # + #^2 - #^3 + #^4 & , k]]; RealDigits[ 1/(5*g[1]*g[2]*g[3]*g[4]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(5*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020

Formula

Equals product_{t=1..4} 1/Gamma(2-exp(2*Pi*i*t/5)), where i is the imaginary unit.
Equals exp(Sum_{j>=1} (1 - zeta(5*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma(2 + phi/2 - i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 + phi/2 + i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 - 1/(2*phi) - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(2 - 1/(2*phi) + i*5^(1/4)*(sqrt(phi)/2))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and i is the imaginary unit. - Vaclav Kotesovec, Dec 15 2020