A175617 Decimal expansion of product_{n>=2} (1-n^(-6)).
9, 8, 2, 6, 8, 4, 2, 7, 7, 7, 4, 2, 1, 9, 2, 5, 1, 8, 3, 2, 4, 4, 7, 5, 9, 1, 6, 2, 5, 7, 1, 3, 6, 3, 7, 3, 5, 1, 4, 8, 2, 8, 9, 9, 8, 4, 4, 9, 1, 9, 5, 5, 5, 1, 7, 9, 1, 6, 9, 3, 3, 9, 6, 5, 4, 4, 3, 7, 8, 7, 1, 0, 9, 0, 0, 3, 7, 0, 0, 8, 6, 2, 3, 6, 1, 8, 4, 8, 6, 6, 9, 9, 8, 0, 0, 7, 8, 4, 7, 5, 6, 1, 5, 7, 6
Offset: 0
Examples
0.9826842777...
Links
- E. Weisstein, Infinite Product, Mathworld.
Programs
-
Maple
cosh(Pi*sqrt(3)/2)^2/6/Pi^2 ; evalf(%) ;
-
Mathematica
RealDigits[(1 + Cosh[Sqrt[3]*Pi])/(12*Pi^2), 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
-
PARI
exp(suminf(j=1, (1 - zeta(6*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
Formula
Equals product_{t=1..5} 1/Gamma(2-exp(Pi*i*t/3)), where i is the imaginary unit and Pi/3 = A019670.
Equals exp(Sum_{j>=1} (1 - zeta(6*j))/j). - Vaclav Kotesovec, Apr 27 2020