cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175618 Decimal expansion of product_{n>=2} (1-n^(-7)).

This page as a plain text file.
%I A175618 #8 Feb 16 2025 08:33:12
%S A175618 9,9,1,6,5,4,9,5,3,4,7,2,8,3,4,4,5,7,4,0,1,3,2,3,3,7,0,5,6,9,0,2,7,4,
%T A175618 2,5,8,6,4,2,6,8,0,8,3,5,4,1,0,3,8,5,0,3,4,9,7,6,6,3,4,9,2,1,4,1,7,0,
%U A175618 5,1,4,3,6,3,2,8,4,3,1,9,7,1,1,8,0,2,3,9,5,0,3,8,3,0,4,3,7,9,5,5,2,1,1,9,5
%N A175618 Decimal expansion of product_{n>=2} (1-n^(-7)).
%H A175618 E. Weisstein, <a href="https://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>, Mathworld.
%F A175618 Equals 1/product_{t=1..6} Gamma(2-exp(2*Pi*i*t/7)), where i is the imaginary unit and 2*Pi/7 = A019695.
%F A175618 Equals exp(Sum_{j>=1} (1 - zeta(7*j))/j). - _Vaclav Kotesovec_, Dec 15 2020
%e A175618 0.99165495...
%t A175618 N[1/(7*Product[ Gamma[(-1)^(8*k/7 + 1)], {k, 1, 6}]), 105] // Re // RealDigits // First (* _Jean-François Alcover_, Feb 05 2013 *)
%o A175618 (PARI) exp(suminf(j=1, (1 - zeta(7*j))/j)) \\ _Vaclav Kotesovec_, Dec 15 2020
%Y A175618 Cf. A109219, A175615, A144666.
%K A175618 cons,easy,nonn
%O A175618 0,1
%A A175618 _R. J. Mathar_, Jul 26 2010