This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175623 #19 Apr 13 2024 01:50:10 %S A175623 0,0,1,1,0,1,0,3,1,3,1,1,0,1,1,2,3,5,1,5,1,1,1,1,0,1,1,1,0,3,5,7,3,5, %T A175623 1,3,4,0,7,4,4,7,1,1,7,2,3,5,7,1,3,7,9,3,9,1,1,1,1,0,1,1,1,1,1,1,8,3, %U A175623 5,7,11,1,5,7,11,5,7,1,1,1,1,1,1,0,1,1,1,1,1,1,1 %N A175623 Triangle read by rows: T(n,k) = prime(k)^(n-1) mod n, 1<=k<=n. %H A175623 Harvey P. Dale, <a href="/A175623/b175623.txt">Table of n, a(n) for n = 1..1000</a> %e A175623 Triangle begins: %e A175623 0; %e A175623 0, 1; %e A175623 1, 0, 1; %e A175623 0, 3, 1, 3; %e A175623 1, 1, 0, 1, 1; %t A175623 T[n_, k_] := Mod[ Prime[k]^(n - 1), n]; Table[ T[n, k], {n, 13}, {k, n}] // Flatten %t A175623 Flatten[Table[PowerMod[Prime[k],n-1,n],{n,20},{k,n}]] (* _Harvey P. Dale_, Oct 13 2015 *) %o A175623 (Magma) %o A175623 [Modexp(NthPrime(k), n-1, n): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 12 2024 %o A175623 (SageMath) %o A175623 flatten([[pow(nth_prime(k),n-1,n) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Apr 12 2024 %Y A175623 Cf. A000079, A177226, A177806. %K A175623 nonn,easy,tabl %O A175623 1,8 %A A175623 _Juri-Stepan Gerasimov_, Dec 12 2010