cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175640 Decimal expansion of Product_{p = prime} (1 +(3*p^2-1)/((p^2-1)*p*(p+1)) ).

Original entry on oeis.org

2, 5, 9, 6, 5, 3, 6, 2, 9, 0, 4, 5, 0, 5, 4, 2, 0, 7, 3, 6, 3, 2, 7, 4, 0, 6, 5, 6, 6, 6, 9, 5, 1, 6, 1, 4, 2, 3, 7, 3, 9, 4, 6, 3, 0, 5, 2, 3, 4, 5, 0, 1, 4, 6, 2, 3, 6, 1, 5, 3, 6, 4, 9, 8, 1, 0, 6, 7, 5, 4, 8, 2, 4, 5, 7, 8, 7, 6, 0, 9, 3, 5, 2, 1, 9, 3, 7, 1, 2, 2, 2, 8, 7, 0, 2, 8, 6, 4, 3, 1, 4, 2, 8, 7, 4
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

Named Barban's constant after the Soviet mathematician Mark Borisovich Barban (1935-1968). - Amiram Eldar, Mar 18 2021

Examples

			2.596536290450542073632740...
		

Crossrefs

Programs

  • Maple
    read("transforms") : efact := 1+(3*p^2-1)/(p^2-1)/p/(p+1) ; Digits := 130 : tm := 380 : subs (p=1/x,1/efact) ; taylor(%,x=0,tm) : L := [seq(coeftayl(%,x=0,i),i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :
    for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i,Le) ; x := evalf(x) ; print(x) ; end do:
  • Mathematica
    digits = 50; $MaxExtraPrecision = 5 digits; s = Log[(1 + (3*p^2 - 1)/((p^2 - 1)*p*(p + 1)))] + O[p, Infinity]^(12 digits) // Normal; B = Exp[s /. Power[p, k_] -> PrimeZetaP[-k]]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jul 24 2017 *)
  • PARI
    prodeulerrat(1 +(3*p^2-1)/((p^2-1)*p*(p+1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (29/18)*(61/48)*(397/360)*(1417/1344)*... inserting p = 2, 3, 5, 7, ... into the factor.
Equals Sum_{n>=1} A000005(n^2)*A000010(n)/n^3. - Richard R. Forberg, May 28 2023

Extensions

More digits from Jean-François Alcover, Jul 24 2017
More digits from Vaclav Kotesovec, Jan 13 2021