cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175643 Decimal expansion of the negated Dirichlet Prime L-function of the real non-principal character mod 6 at 1.

Original entry on oeis.org

1, 4, 1, 9, 4, 4, 8, 3, 8, 5, 3, 3, 1, 9, 5, 7, 0, 8, 6, 6, 1, 3, 9, 2, 6, 3, 9, 7, 2, 1, 7, 3, 4, 3, 1, 6, 6, 7, 5, 4, 1, 1, 0, 4, 4, 0, 1, 5, 8, 8, 9, 6, 5, 4, 9, 0, 8, 1, 7, 0, 8, 4, 5, 1, 3, 1, 7, 3, 3, 2, 8, 2, 6, 9, 0, 7, 3, 7, 2, 3, 3, 5, 9, 8, 1, 7, 4, 1, 5, 9, 9, 4, 5, 6, 0, 6, 5, 7, 3, 8, 7, 5, 6, 1, 3, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The absolute value of S(1,chi_2) = sum_{primes p = A000040} A134667(p)/p = -1/5 +1/7 -1/11+1/13 -1/17 +1/19 -1/23 +...

Examples

			S(1,chi_2) = -0.14194483853319570866139263972173431667541104401...
		

Crossrefs

Cf. A086241 (mod 3), A086239 (mod 4), A175642 (mod 5).

Programs

  • Mathematica
    Do[Print[N[-Log[4/3]/2 + Sum[Log[(Zeta[2*k + 1, 1/6] - Zeta[2*k + 1, 5/6])^2 / ((2^(4*k + 2) - 1) * (3^(4*k + 2) - 1) * Zeta[4*k + 2])] * MoebiusMu[2*k + 1]/(4*k + 2), {k, 1, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jun 27 2020 *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[6, 2, 1], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)

Extensions

More terms from Vaclav Kotesovec, Jun 27 2020