A175645 Decimal expansion of the sum 1/p^3 over primes == 1 (mod 3).
0, 0, 3, 6, 0, 0, 4, 2, 3, 3, 4, 6, 9, 4, 2, 9, 5, 8, 9, 5, 7, 4, 7, 6, 9, 4, 7, 6, 2, 9, 2, 3, 8, 4, 6, 4, 9, 4, 2, 4, 9, 5, 1, 6, 5, 1, 3, 6, 9, 4, 3, 9, 1, 5, 4, 8, 1, 0, 3, 5, 8, 7, 3, 5, 1, 0, 7, 4, 1, 2, 0, 2, 5, 3, 5, 0, 4, 4, 6, 1, 2, 9, 2, 7, 0, 6, 8, 5, 0, 9, 7, 5, 9, 5, 3, 2, 0, 7, 9, 1, 7, 2, 9, 6, 7, 7
Offset: 0
Examples
P_{3,1}(3) = 0.00360042334694295895747694762923846494249516...
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..1008
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
- OEIS index to entries related to the (prime) zeta function.
Crossrefs
Programs
-
Mathematica
(* A naive solution yielding 12 correct digits: *) s1 = s2 = 0.; Do[Switch[Mod[n, 3], 1, If[PrimeQ[n], s1 += 1/n^3], 2, If[PrimeQ[n], s2 += 1/n^3]], {n, 10^7}]; Join[{0, 0}, RealDigits[(PrimeZetaP[3] + s1 - s2 - 1/27)/2, 10, 12][[1]]] (* Jean-François Alcover, Mar 15 2018 *) With[{s=3}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *) S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; $MaxExtraPrecision = 1000; digits = 121; Join[{0,0}, RealDigits[Chop[N[P[3, 1, 3], digits]], 10, digits-1][[1]]] (* Vaclav Kotesovec, Jan 22 2021 *)
-
PARI
s=0; forprimestep(p=1,1e8,3,s+=1./p^3);s \\ for illustration only: primes up to 10^N give about 2N+2 correct digits. - M. F. Hasler, Apr 22 2021 A175645_upto(N=100)=localprec(N+5);digits((PrimeZeta31(3)+1)\.1^N)[^1] \\ Cf. A175644 for PrimeZeta31. - M. F. Hasler, Apr 23 2021
Extensions
More digits from Vaclav Kotesovec, Jun 27 2020
Comments