A175667 Smallest number m such that phi(m) = n*tau(m), with phi=A000010 and tau=A000005; a(n)=0 if no such m exists.
1, 5, 7, 34, 11, 13, 58, 17, 19, 55, 23, 65, 106, 29, 31, 85, 0, 37, 0, 41, 43, 115, 47, 119, 125, 53, 133, 145, 59, 61, 0, 388, 67, 274, 71, 73, 298, 0, 79, 187, 83, 203, 346, 89, 209, 235, 0, 97, 394, 101, 103, 169, 107, 109, 253, 113, 458, 295, 0, 287, 0, 0, 127, 514, 131
Offset: 1
Keywords
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Table[SelectFirst[Range[10^5], EulerPhi@ # == n DivisorSigma[0, #] &] /. k_ /; MissingQ@ k -> 0, {n, 120}] (* Michael De Vlieger, Aug 09 2017, Version 10.2 *)
Formula
From Enrique Pérez Herrero, Jan 01 2012: (Start)
If n > 1 then a(n) >= 2*n+1 or a(n)=0.
If p and q = 2*p+1 are both prime, A005384, then a(p) = 2*p+1.
If p > 3 and q = 4*p+1 are both prime, A023212, then a(p) = 8*p + 2 = 2*q.
If p > 2 is prime and both 2*p+1 and 4*p+1 are composite, A043297, then a(n)=0.
(End)
Extensions
More terms from R. J. Mathar, Aug 07 2010
Comment corrected by Enrique Pérez Herrero, Aug 12 2010
Comments