cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357478 Numbers n such that both n and n+1 are in A175729.

Original entry on oeis.org

7105, 37583, 229177, 309281, 343865, 480654, 794625, 808860, 977185, 2135895, 2174080, 2755841, 5978490, 6865055, 7147761, 8784216, 11207889, 15251713, 15854166, 21526897, 28432040, 29831601, 32865300, 33531212, 40931731, 53237184, 57766731, 63564985, 67849950, 70751360, 72352760, 85121596
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 30 2022

Keywords

Comments

Numbers n such that the sum of the prime factors with multiplicity of n divides n-1 and the sum of the prime factors with multiplicity of n+1 divides n.

Examples

			a(3) = 229177 is a term because 229177 = 13*17^2*61, 13+17+17+61 = 108 divides 229177-1 = 229176, 229177+1 = 229178 = 2*19*37*163, and 2+19+37+163 = 221 divides 229177.
		

Crossrefs

Cf. A175729.

Programs

  • Maple
    R:= NULL: count:= 0: state:= 0:
    for n from 2 while count < 30 do
      s:= add(t[1]*t[2],t=ifactors(n)[2]);
      if n mod s = 1 then
         if state = 1 then R:= R, n-1; count:= count+1 fi;
         state:= 1;
      else
         state:= 0;
      fi
    od:
    R;
  • Mathematica
    q[n_] := Divisible[n - 1, Plus @@ Times @@@ FactorInteger[n]]; s = {}; q1 = q[2]; Do[q2 = q[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 3, 10^6}]; s (* Amiram Eldar, Sep 30 2022 *)
  • Python
    from sympy import factorint
    from itertools import count, islice
    def ok(n):
        return n > 1 and (n-1)%sum(p*e for p, e in factorint(n).items()) == 0
    def agen():
        prevok = kok = False
        for k in count(1):
            prevok, kok = kok, ok(k)
            if prevok and kok: yield k-1
    print(list(islice(agen(), 6))) # Michael S. Branicky, Sep 30 2022
Showing 1-1 of 1 results.