cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175732 a(n) = gcd(phi(n), psi(n)).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 4, 6, 2, 2, 4, 2, 6, 8, 8, 2, 6, 2, 4, 4, 2, 2, 8, 10, 6, 18, 12, 2, 8, 2, 16, 4, 2, 24, 12, 2, 6, 8, 8, 2, 12, 2, 4, 24, 2, 2, 16, 14, 10, 8, 12, 2, 18, 8, 24, 4, 2, 2, 16, 2, 6, 12, 32, 12, 4, 2, 4, 4, 24, 2, 24, 2, 6, 40, 12, 12, 24, 2, 16, 54, 2, 2, 24, 4, 6, 8, 8, 2, 24, 8
Offset: 1

Views

Author

Enrique Pérez Herrero, Aug 24 2010

Keywords

Comments

a(n)^2 divides J_2(n), where J_2 is A007434.
If p > 2 is a prime, a(n) = 2. - Enrique Pérez Herrero, Jan 02 2012

Examples

			a(56) = gcd(phi(56), psi(56)) = gcd(24, 96) = 24.
		

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; DedekindPsi[n_] := JordanTotient[n, 2]/EulerPhi[n]; A175732[n_] := GCD[EulerPhi[n], DedekindPsi[n]]; Array[A175732, 100]
    f1[p_, e_] := (p - 1)*p^(e - 1); f2[p_, e_] := (p + 1)*p^(e - 1); a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, GCD[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Array[a, 40] (* Amiram Eldar, Feb 20 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); gcd(prod(i = 1, #f~, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)), prod(i = 1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)));} \\ Amiram Eldar, Feb 20 2023

Formula

a(n) = gcd(A000010(n), A001615(n)).
a(n) >= (n*2^(omega(n)-1))/rad(n).
a(A002110(n)) = A078558(n). - Enrique Pérez Herrero, Dec 04 2012
For k>=1, a(2^k) = 2^(k-1) and a(p^k) = 2*p^(k-1) if p is an odd prime. - Amiram Eldar, Feb 20 2023
a(3^n) = A025192(n). - Enrique Pérez Herrero, Jun 05 2023