This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175739 #15 Nov 03 2018 19:05:08 %S A175739 1,1,-3,1,1,-1,-1,-1,1,1,-1,0,-1,0,-1,1,1,-1,0,0,-1,0,0,-1,1,1,-1,0,0, %T A175739 0,-1,0,0,0,-1,1,1,-1,0,0,0,0,-1,0,0,0,0,-1,1,1,-1,0,0,0,0,0,-1,0,0,0, %U A175739 0,0,-1,1,1,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,1,-1,0,0,0,0,0,0,0 %N A175739 Triangle T(n,m) with the coefficient [x^m] of the polynomial x^(2*n) - x^(2*n - 1) - x^n - x + 1 in row n, column m, 1 <= m <= 2*n. T(0,0) = 1. %C A175739 The polynomials up to n = 10 are Salem polynomials (the third lowest Salem in the table). %H A175739 Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a> %H A175739 William J. Floyd, <a href="http://dx.doi.org/10.1007/BF01444729">Growth of planar Coxeter groups, P.V. numbers, and Salem numbers</a>, Math. Ann. Vol. 293 (1992), 475-483. %F A175739 Sum_{m=0..2*n} T(n,m)= -1. %F A175739 From _Franck Maminirina Ramaharo_, Nov 02 2018: (Start) %F A175739 G.f.: (1 - 4*x*y + x*(2 + x + 2*x^2)*y^2 - x^2*(1 + x^2)*y^3)/((1 - y)*(1 - x*y)*(1 - x^2*y)). %F A175739 E.g.f.: (-(1 - x)*exp(x^2*y) - x*exp(x*y) + x*(1 - x)*exp(y) + 1 + x^2)/x. (End) %e A175739 The polynomial coefficients are %e A175739 1; %e A175739 1, -3, 1; %e A175739 1, -1, -1, -1, 1; %e A175739 1, -1, 0, -1, 0, -1, 1; %e A175739 1, -1, 0, 0, -1, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A175739 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A175739 ... %e A175739 The corresponding Mahler measures are %e A175739 ----------------------------------------------------- %e A175739 n | M(p_n) || n | M(p_n) %e A175739 ----------------------------------------------------- %e A175739 1 | 1.7220838057390422450 || 6 | 1.2612309611 %e A175739 2 | 1.5061356795538388 || 7 | 1.2363179318 %e A175739 3 | 1.40126836793 || 8 | 1.21639166113826509 %e A175739 4 | 1.337313210201 || 9 | 1.200026523 %e A175739 5 | 1.293485953125 || 10 | 1.286735 %e A175739 ... %t A175739 p[x_, n_] = If[n == 0, 1, x^(2*n) - x^(2*n - 1) - x^n - x + 1]; %t A175739 Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten %o A175739 (Maxima) T(n, k) := if n = 0 and k = 0 then 1 else ratcoef(x^(2*n) - x^(2*n - 1) - x^n - x + 1, x, k)$ %o A175739 create_list(T(n, k), n, 0, 10, k, 0, 2*n); /* _Franck Maminirina Ramaharo_, Nov 02 2018 */ %Y A175739 Cf. A143439. %K A175739 sign,easy,tabf %O A175739 0,3 %A A175739 _Roger L. Bagula_, Dec 04 2010