This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175740 #24 Sep 08 2022 08:45:51 %S A175740 1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,12,14,17,21,26,32,39,47,56,66, %T A175740 79,94,112,134,161,194,234,282,339,407,488,585,701,840,1007,1208,1450, %U A175740 1741,2090,2510,3013,3616,4339,5206,6246,7494,8992,10790,12948 %N A175740 Expansion of 1/(1 - x - x^10 - x^19 + x^20). %C A175740 Limiting ratio is 1.2000265239873915. %H A175740 G. C. Greubel, <a href="/A175740/b175740.txt">Table of n, a(n) for n = 0..1000</a> %H A175740 Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a> %H A175740 <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,-1). %F A175740 G.f.: 1/((1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^3 - x^4 + x^7 - x^10 - x^11 + x^14)). %F A175740 a(n) = a(n-1) + a(n-10) + a(n-19) + a(n-20). - _Franck Maminirina Ramaharo_, Oct 31 2018 %p A175740 seq(coeff(series(1/(1 -x -x^10 -x^19 +x^20), x, n+1), x, n), n = 0..60); # _G. C. Greubel_, Dec 05 2019 %t A175740 CoefficientList[Series[1/(1 -x -x^10 -x^19 +x^20), {x, 0, 60}], x] %o A175740 (PARI) my(x='x+O('x^60)); Vec(1/(1 -x -x^10 -x^19 +x^20)) \\ _G. C. Greubel_, Nov 03 2018 %o A175740 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1 - x - x^10 - x^19 + x^20))); // _G. C. Greubel_, Nov 03 2018 %o A175740 (Sage) %o A175740 def A175740_list(prec): %o A175740 P.<x> = PowerSeriesRing(ZZ, prec) %o A175740 return P( 1/(1 -x -x^10 -x^19 +x^20) ).list() %o A175740 A175740_list(60) # _G. C. Greubel_, Dec 05 2019 %Y A175740 Cf. A175739. %Y A175740 Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499. %K A175740 nonn,easy %O A175740 0,11 %A A175740 _Roger L. Bagula_, Dec 04 2010