cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175743 Numbers with 33 divisors.

This page as a plain text file.
%I A175743 #26 Jul 03 2022 06:46:36
%S A175743 9216,25600,50176,123904,173056,236196,295936,369664,541696,861184,
%T A175743 984064,1401856,1476225,1721344,1893376,2262016,2876416,2893401,
%U A175743 3564544,3810304,4596736,5161984,5456896,6390784,7054336,7144929,8111104,9634816,9979281,10445824
%N A175743 Numbers with 33 divisors.
%C A175743 Numbers of the form p^32 and p^10*q^2, where p and q are distinct primes.
%H A175743 T. D. Noe, <a href="/A175743/b175743.txt">Table of n, a(n) for n = 1..1000</a>
%H A175743 OEIS Wiki, <a href="https://oeis.org/wiki/Index_entries_for_number_of_divisors">Index entries for number of divisors</a>
%F A175743 A000005(a(n)) = 33.
%F A175743 Sum_{n>=1} 1/a(n) = P(2)*P(10) - P(12) + P(32) = 0.000203328..., where P is the prime zeta function. - _Amiram Eldar_, Jul 03 2022
%t A175743 Select[Range[2000000],DivisorSigma[0,#]==33&]  (* _Harvey P. Dale_, Jan 26 2011 *)
%o A175743 (PARI) is(n)=numdiv(n)==33 \\ _Charles R Greathouse IV_, Jun 19 2016
%Y A175743 Cf. A000005.
%K A175743 nonn
%O A175743 1,1
%A A175743 _Jaroslav Krizek_, Aug 27 2010
%E A175743 More terms from _Harvey P. Dale_, Jan 26 2011
%E A175743 Extended by _T. D. Noe_, May 08 2011