This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175747 #24 Feb 22 2025 12:19:54 %S A175747 786432,1310720,1835008,2883584,3407872,4456448,4980736,6029312, %T A175747 7602176,8126464,9699328,10747904,11272192,12320768,13893632,15466496, %U A175747 15990784,17563648,18612224,19136512,20709376,21757952,23330816,25427968,26476544,27000832,28049408 %N A175747 Numbers with 38 divisors. %C A175747 Numbers of the forms p^37 and p^18*q^1, where p and q are distinct primes. %H A175747 T. D. Noe, <a href="/A175747/b175747.txt">Table of n, a(n) for n = 1..1000</a> %H A175747 OEIS Wiki, <a href="https://oeis.org/wiki/Index_entries_for_number_of_divisors">Index entries for number of divisors</a> %F A175747 A000005(a(n))=38. %t A175747 Select[Range[10000000],DivisorSigma[0,#]==38&] (* _Vladimir Joseph Stephan Orlovsky_, May 06 2011 *) %o A175747 (PARI) is(n)=numdiv(n)==38 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A175747 (Python) %o A175747 def A175747(n): %o A175747 def bisection(f,kmin=0,kmax=1): %o A175747 while f(kmax) > kmax: kmax <<= 1 %o A175747 kmin = kmax >> 1 %o A175747 while kmax-kmin > 1: %o A175747 kmid = kmax+kmin>>1 %o A175747 if f(kmid) <= kmid: %o A175747 kmax = kmid %o A175747 else: %o A175747 kmin = kmid %o A175747 return kmax %o A175747 def f(x): return int(n+x-sum(primepi(x//p**18) for p in primerange(integer_nthroot(x,18)[0]+1))+primepi(integer_nthroot(x,19)[0])-primepi(integer_nthroot(x,37)[0])) %o A175747 return bisection(f,n,n) # _Chai Wah Wu_, Feb 22 2025 %Y A175747 Cf. A175745, A175746, A139572. %K A175747 nonn %O A175747 1,1 %A A175747 _Jaroslav Krizek_, Aug 27 2010 %E A175747 Extended by _T. D. Noe_, May 08 2011