This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175795 #16 Dec 13 2015 12:41:56 %S A175795 1,65,207,1769,2066,2771,3197,4330,4587,4769,4946,5067,6443,6623,6989, %T A175795 7133,8201,9263,11951,12331,13243,16403,17429,17441,21416,22083,23161, %U A175795 24746,27058,27945,28049,28185,28451,29111,30551,31439,32554,32566,32849,33715 %N A175795 Numbers n such that the digits of sigma(n) are exactly the same (albeit in different order) as the digits of phi(n), in base 10. %H A175795 Donovan Johnson, <a href="/A175795/b175795.txt">Table of n, a(n) for n = 1..1000</a> %e A175795 2771 is in the sequence because sigma(2771) = 2952, phi(2771) = 2592 %t A175795 okQ[n_] := Module[{idn = IntegerDigits[DivisorSigma[1,n]]}, Sort[idn] == Sort[IntegerDigits[EulerPhi[n]]]]; Select[Range[40000], okQ] %o A175795 (Python) %o A175795 from sympy import totient, divisor_sigma %o A175795 A175795_list = [n for n in range(1,10**4) if sorted(str(divisor_sigma(n))) == sorted(str(totient(n)))] # _Chai Wah Wu_, Dec 13 2015 %o A175795 (PARI) isok(n) = (de = digits(eulerphi(n))) && (ds = digits(sigma(n))) && (vecsort(de) == vecsort(ds)); \\ _Michel Marcus_, Dec 13 2015 %Y A175795 Cf. A000010 (Euler totient function), A000203 (sigma function), A115920, A115921, A114065. %K A175795 nonn,base %O A175795 1,2 %A A175795 _Michel Lagneau_, Sep 06 2010