This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175796 #11 May 19 2021 14:57:04 %S A175796 3,3,4,9,256 %N A175796 H_n(n, 2) where H_c(a, b) is the hyperoperation function with operator c. %H A175796 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hyperoperation">Hyperoperation</a> %H A175796 <a href="/index/Ho">Index Section Ho-Hy</a> %F A175796 a(n) = H_n(n, 2) %F A175796 H_c(a, b) = {b + 1 if c = 0; a if c = 1, b = 0; 0 if c = 2, b = 0; 1 if c >= 3, b = 0; H_{c-1}(a, H_c(a, b - 1)) otherwise} %e A175796 a(0) = H_0(0, 2) = 2 + 1 = 3 %e A175796 a(1) = H_1(1, 2) = 1 + 2 = 3 %e A175796 a(2) = H_2(2, 2) = 2 * 2 = 4 %e A175796 a(3) = H_3(3, 2) = 3 ^ 2 = 9 %e A175796 a(4) = H_4(4, 2) = 4 ^^ 2 = 4 ^ 4 = 256 %e A175796 a(5) = H_5(5, 2) = 5 ^^^ 2 = 5 ^^ 5 = 5 ^ 5 ^ 5 ^ 5 ^ 5 =~ 10 ^ (10 ^ (10 ^ (2184.1257...))) %o A175796 (Python) %o A175796 def H(a, b, c): %o A175796 if c == 0: return b + 1 %o A175796 if c == 1 and b == 0: return a %o A175796 if c == 2 and b == 0: return 0 %o A175796 if c >= 3 and b == 0: return 1 %o A175796 return H(a, H(a, b - 1, c), c - 1) %o A175796 for n in range(5): print(H(n, 2, n)) %Y A175796 For H_n(x,2) with fixed x, cf. A054871 (x=3), A253855 (x=4), A255176 (x=2), A256131 (x=10), A261143 (x=1). - _Danny Rorabaugh_, Oct 20 2015 %K A175796 nonn %O A175796 0,1 %A A175796 _Grant Garcia_, Sep 06 2010