cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175800 Number of real zeros of the polynomial whose coefficients are the decimal digits of Fibonacci(n).

This page as a plain text file.
%I A175800 #15 May 12 2019 02:22:55
%S A175800 0,0,0,0,0,0,1,1,1,1,1,2,0,0,2,0,1,1,1,1,0,2,2,0,0,1,1,1,1,1,2,0,0,0,
%T A175800 0,1,1,1,1,2,4,2,0,0,1,1,3,1,1,2,2,0,0,2,1,1,3,1,1,4,2,2,2,1,1,3,1,1,
%U A175800 0,2,0,2,2,3,1,1,1,1,2,2,0,2,2,1,1,1,1,2,2,4,0,0,1,1,1
%N A175800 Number of real zeros of the polynomial whose coefficients are the decimal digits of Fibonacci(n).
%C A175800 a(n) is the number of real zeros of the polynomial Sum_{k=0..p} d(k)*x^k
%C A175800   where d(k) are the decimal digits of Fibonacci(n) = Sum_{i>=0} 10^i*d(i).
%e A175800 a(41) = 4 because Fibonacci(41) = 165580141 and the polynomial 1 + 4*x + x^2 + 8*x^4 + 5*x^5 + 5*x^6 + 6*x^7 + x^8 has 4 real roots, x0 = -5.160582776..., x2 = -1.173079878..., x3 = -0.7235395314..., and x4 = -0.2802116772...
%p A175800 A175800 := proc(n)
%p A175800         d := convert(combinat[fibonacci](n),base,10) ;
%p A175800         P := add( op(i,d)*x^(i-1),i=1..nops(d)) ;
%p A175800         [fsolve(P,x,real)] ;
%p A175800         nops(%) ;
%p A175800 end proc:
%p A175800 seq(A175800(n),n=1..45) ; # _R. J. Mathar_, Dec 06 2010
%Y A175800 Cf. A000045, A173667.
%K A175800 nonn,base
%O A175800 1,12
%A A175800 _Michel Lagneau_, Dec 04 2010