cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175834 Number of real zeros of the polynomial whose coefficients are the decimal expansion of the golden ratio truncated to n places (A011551).

This page as a plain text file.
%I A175834 #10 Mar 30 2012 18:35:53
%S A175834 0,1,2,1,2,1,2,1,2,1,2,1,2,1,2,3,2,3,2,3,4,3,2,1,2,1,2,1,2,1,2,1,2,1,
%T A175834 2,1,2,1,2,3,2,3,2
%N A175834 Number of real zeros of the polynomial whose coefficients are the decimal expansion of the golden ratio truncated to n places (A011551).
%C A175834 a(n) = number of real zeros of the polynomial P(n,x) = sum_{k=0..n} p(k) x^k where p(k) are the digits of the decimal expansion of floor(GoldenRatio *10^n) and GoldenRatio = 1.6180339 ....
%e A175834 a(4) = 2 because 16180 => P(4,x) = 8x+x^2+6x^3+x^4 has 2 real roots :
%e A175834 x0= - 6.053134348… and x1 = 0.
%p A175834 with(numtheory):Digits:=50: T:=array(1..45):for zz from 0 to 43 do:n:=floor(((1+sqrt(5))/2)*10^zz):   for i from 1 to 43 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od: x:=fsolve(T[1]+ T[2]*z + T[3]*z^2+ T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7 + T[9]*z^8 + T[10]*z^9+
%p A175834   T[11]*z^10+ T[12]*z^11 + T[13]*z^12 + T[14]*z^13 + T[15]*z^14+ T[16]*z^15+ T[17]*z^16 + T[18]*z^17 + T[19]*z^18 + T[20]*z^19 + T[21]*z^20 + T[22]*z^21+ T[23]*z^22+ T[24]*z^23 + T[25]*z^24 + T[26]*z^25+ T[27]*z^26+ T[28]*z^27+ T[29]*z^28 + T[30]*z^29 + T[31]*z^30+ T[32]*z^31 + T[33]*z^32 + T[34]*z^33+ T[35]*z^34+ T[36]*z^35 + T[37]*z^36 + T[38]*z^37+ T[39]*z^38 + T[40]*z^39+ T[41]*z^40+ T[42]*z^41 + T[43]*z^42, z, real):x1:=[x]: x2:=nops(x1): printf ( "%d %d %d\n",zz,n,x2):od:
%Y A175834 Cf. A173667 A011551.
%K A175834 nonn,base,less
%O A175834 0,3
%A A175834 _Michel Lagneau_, Dec 05 2010