cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175838 Let rho(n) be the first positive root of Bessel function J_n(x). This sequence is decimal expansion of derivative rho'(0)=1.54288974...

Original entry on oeis.org

1, 5, 4, 2, 8, 8, 9, 7, 4, 2, 5, 9, 9, 3, 1, 3, 6, 8, 8, 0, 7, 0, 3, 2, 1, 4, 2, 1, 4, 7, 1, 4, 3, 5, 5, 6, 1, 6, 9, 8, 4, 6, 0, 7, 8, 7, 3, 5, 0, 1, 9, 7, 5, 8, 9, 3, 5, 2, 5, 2, 9, 4, 4, 1, 0, 2, 6, 8, 2, 5, 6, 4, 6, 9, 7, 2, 9, 1, 1, 2, 6, 0, 5, 0, 2, 3, 8, 2, 7, 4, 6, 7, 3, 8, 1, 0, 4, 7, 5, 6, 6, 1, 5, 4, 6
Offset: 1

Views

Author

Vladimir Reshetnikov, Sep 19 2010

Keywords

Crossrefs

Cf. A115368. - R. J. Mathar, Sep 22 2010

Programs

  • Maple
    From R. J. Mathar, Sep 22 2010: (Start)
    Digits := 120 : Jnudnu := proc(nu,z,kmax) -add( (-1)^k*Psi(nu+k+1)/GAMMA(nu+k+1)*(z/2)^(2*k+nu)/k! , k=0..kmax) ; evalf(%) ; end proc:
    Jprime := diff(BesselJ(0,x),x) ; z := evalf(BesselJZeros(0,1)) ; denomin := subs(x=z,Jprime) ;
    for kmax from 30 to 70 by 10 do numerat := Jnudnu(0,z,kmax) ; c := evalf(-numerat/denomin) ; print(c) ; end do: # Abramowitz-Stegun 9.1.64
    (End)
  • Mathematica
    N[(Pi BesselY[0,BesselJZero[0,1]])/(2 BesselJ[1,BesselJZero[0,1]]),200]
  • PARI
    besseljzero'(0) \\ Charles R Greathouse IV, Oct 23 2023