A175844 Parse the base-2 expansion of 1/n using the Ziv-Lempel encoding as described in A106182; sequence gives the eventual period of the differences of the sequence of lengths of the successive phrases.
1, 1, 4, 1, 16, 4, 9, 1, 36, 16, 100, 4, 144, 9, 16, 1, 64, 36, 324, 16, 36, 100, 121, 4, 400, 144, 324, 9
Offset: 1
Keywords
Examples
For n=3, the sequence of base-2 digits of 1/3 is {0,1,0,1,0,1,0,1,0,1,0,1,...}. The Ziv-Lempel encoding parses this into "phrases": {0}, {1}, {0,1}, {0,1,0}, {1,0}, {1,0,1}, {0,1,0,1}, {0,1,0,1,0}, {1,0,1,0}, {1,0,1,0,1}, {0,1,0,1,0,1}, ..., with lengths {1,1,2,3,2,3,4,5,4,5,6,7,6,7,8,9,8,9,10,11,...}. The differences are {0,1,1,-1,1,1,1,-1,1,1,1,-1,1,...} which quickly becomes periodic with period 4. Thus a(3)=4.
Comments