This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175887 #44 Nov 27 2024 07:25:00 %S A175887 1,14,16,29,31,44,46,59,61,74,76,89,91,104,106,119,121,134,136,149, %T A175887 151,164,166,179,181,194,196,209,211,224,226,239,241,254,256,269,271, %U A175887 284,286,299,301,314,316,329,331,344,346,359,361,374,376,389,391,404 %N A175887 Numbers that are congruent to {1, 14} mod 15. %C A175887 Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in this case, a(n)^2-1==0 (mod 15). %H A175887 Bruno Berselli, <a href="/A175887/b175887.txt">Table of n, a(n) for n = 1..10000</a>. %H A175887 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A175887 G.f.: x*(1+13*x+x^2)/((1+x)*(1-x)^2). %F A175887 a(n) = (30*n+11*(-1)^n-15)/4. %F A175887 a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3). %F A175887 a(n) = 15*A000217(n-1) -2*sum(a(i), i=1..n-1) +1 for n>1. %F A175887 a(n) = A047209(A047225(n+1)). %F A175887 Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/15)*cot(Pi/15) = A019693 * A019976 / 10. - _Amiram Eldar_, Dec 04 2021 %F A175887 E.g.f.: 1 + ((30*x - 15)*exp(x) + 11*exp(-x))/4. - _David Lovler_, Sep 05 2022 %F A175887 From _Amiram Eldar_, Nov 25 2024: (Start) %F A175887 Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/15)*cosec(Pi/15). %F A175887 Product_{n>=2} (1 + (-1)^n/a(n)) = 2*cos(Pi/15). (End) %t A175887 Select[Range[1, 450], MemberQ[{1,14}, Mod[#, 15]]&] %t A175887 CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* _Vincenzo Librandi_, Aug 19 2013 *) %o A175887 (Magma) [n: n in [1..450] | n mod 15 in [1,14]]; %o A175887 (Haskell) %o A175887 a175887 n = a175887_list !! (n-1) %o A175887 a175887_list = 1 : 14 : map (+ 15) a175887_list %o A175887 -- _Reinhard Zumkeller_, Jan 07 2012 %o A175887 (Magma) [(30*n+11*(-1)^n-15)/4: n in [1..55]]; // _Vincenzo Librandi_, Aug 19 2013 %o A175887 (PARI) a(n)=(30*n+11*(-1)^n-15)/4 \\ _Charles R Greathouse IV_, Sep 28 2015 %Y A175887 Cf. A000217, A019693, A019976, A113801, A175886, A091998, A175885, A090771, A056020, A047522, A047336, A007310, A047209, A005408, A001651. %Y A175887 Cf. A132240 (primes). %K A175887 nonn,easy %O A175887 1,2 %A A175887 _Bruno Berselli_, Oct 08 2010 - Nov 17 2010