This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A175924 #15 May 19 2021 15:01:05 %S A175924 1,65536,16777216,2199023255552, %T A175924 1684996666696914987166688442938726917102321526408785780068975640576 %N A175924 Smallest power of 2 with n repeated digits. %C A175924 The subsequent terms are too large to display. %C A175924 a(6) and a(7), 2^971 and 2^972, respectively, both of which have 293 digits; a(8), 2^8554, has 2576 digits. a(9), 2^42485, has 12790 digits. %C A175924 Corresponding exponents of 2 are 0, 16, 24, 41, 220, 971, 972, 8554, 42485, 42486, 271979. [_Zak Seidov_, Oct 19 2010] %H A175924 Wikipedia, <a href="http://en.wikipedia.org/wiki/Power_of_2">Power of 2</a> %e A175924 a(1) is 1 because it is the first power of 2; all integers have at least one digit. %e A175924 a(2) is 65536 because it is the first power of 2 with two of the same digit in a row. %e A175924 a(3) is 16777216 because it is the first power of 2 with three of the same digit in a row. %t A175924 f[n_] := Block[{k = 0}, While[ !MemberQ[Length /@ Split@ IntegerDigits[2^k], n], k++ ]; 2^k]; Table[f[n], {n, 5}] (* _Robert G. Wilson v_, Oct 21 2010 *) %o A175924 (Python) %o A175924 import math %o A175924 for N in range(1, 10): %o A175924 repdigits = 1 %o A175924 n = 0 %o A175924 while repdigits < N: %o A175924 n += 1 %o A175924 s = str(2 ** n) %o A175924 prev = "" %o A175924 repdigits = maxrepdigits = 1 %o A175924 for d in s: %o A175924 if d == prev: repdigits += 1 %o A175924 else: %o A175924 maxrepdigits = max(maxrepdigits, repdigits) %o A175924 repdigits = 1 %o A175924 prev = d %o A175924 repdigits = max(maxrepdigits, repdigits) %o A175924 print(N, 2 ** n) %Y A175924 Subsequence of A000079 (powers of 2). %Y A175924 Cf. A045875. %K A175924 base,nonn %O A175924 1,2 %A A175924 _Grant Garcia_, Oct 18 2010, Oct 20 2010