cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175926 Sum of divisors of cubes.

This page as a plain text file.
%I A175926 #49 Oct 25 2023 14:16:24
%S A175926 1,15,40,127,156,600,400,1023,1093,2340,1464,5080,2380,6000,6240,8191,
%T A175926 5220,16395,7240,19812,16000,21960,12720,40920,19531,35700,29524,
%U A175926 50800,25260,93600,30784,65535,58560,78300,62400,138811,52060,108600,95200
%N A175926 Sum of divisors of cubes.
%C A175926 The Mobius transform of the sequence is 1, 14, 39 ,112, 155,..., which equals the sequence defined by n*A160889(n). - _R. J. Mathar_, Apr 15 2011
%C A175926 _Zhi-Wei Sun_ noted that the first 10^7 terms are pairwise distinct, but _Noam D. Elkies_ found that a(48142241) = a(48374911), a(384422506) = a(403764207) and so on. - _Zhi-Wei Sun_, Jan 08 2014
%H A175926 Seiichi Manyama, <a href="/A175926/b175926.txt">Table of n, a(n) for n = 1..10000</a>
%F A175926 a(n) = A000203(n^3). - _R. J. Mathar_, Mar 31 2011
%F A175926 Multiplicative with a(p^e) = (p^(3e+1)-1)/(p-1). - _R. J. Mathar_, Mar 31 2011
%F A175926 Sum_{k>=1} 1/a(k) = 1.11535899887110289127674868460900333554265894187008102863022551119560512446... - _Vaclav Kotesovec_, Sep 20 2020
%F A175926 Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 0.4732277044... . - _Amiram Eldar_, Nov 05 2022
%t A175926 DivisorSigma[1,#]&/@((Range[40])^3) (* _Harvey P. Dale_, Aug 30 2015 *)
%t A175926 f[p_, e_] := (p^(3*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Sep 10 2020 *)
%o A175926 (Magma) [ SumOfDivisors(n^3) : n in [1..100]]; // _Vincenzo Librandi_, Apr 14 2011
%o A175926 (PARI) a(n) = sigma(n^3); \\ _Amiram Eldar_, Nov 05 2022
%o A175926 (Python)
%o A175926 from math import prod
%o A175926 from sympy import factorint
%o A175926 def A175926(n): return prod((p**(3*e+1)-1)//(p-1) for p,e in factorint(n).items()) # _Chai Wah Wu_, Oct 25 2023
%Y A175926 Cf. sigma(n^k): A000203 (k=1), A065764 (k=2), this sequence (k=3), A202994 (k=4), A203556 (k=5).
%Y A175926 Cf. A000578, A013662, A160889.
%K A175926 nonn,mult
%O A175926 1,2
%A A175926 _Zak Seidov_, Oct 19 2010