cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A175950 A175948(n)-A175949(n).

Original entry on oeis.org

0, 0, 0, -2, 0, 2, 0, -6, -2, 0, -2, 0, 4, 6, 0, -14, -6, -4, -8, 2, 0, -2, -6, -4, 2, 4, 6, 4, 12, 14, 0, -30, -14, -12, -20, -6, -12, -14, -20, 6, 6, 0, 2, 0, -4, -6, -14, -12, -2, 0, 0, 14, 8, 6, 10, 0, 10, 12, 22, 12, 28, 30, 0, -62, -30, -28, -44, -22, -36, -38, -48, -10, -18
Offset: 1

Views

Author

Dylan Hamilton, Oct 28 2010

Keywords

Comments

A difference between two ways of encoding-decoding run lengths of 0's and 1's in the binary representation of n.

Programs

  • Mathematica
    takelist[l_, t_] := Module[{lent, term},Set[lent, Length[t]]; Table[l[[t[[y]]]], {y, 1, lent}]]
    frombinrep[x_] := FromDigits[Flatten[Table[Table[If[OddQ[n], 1, 0], {d, 1, x[[n]]}], {n, 1, Length[x]}]], 2]
    binrep[x_] := repcount[IntegerDigits[x, 2]]
    onebinrep[x_]:=Module[{b},b=binrep[x];takelist[b,Range[1,Length[b],2]]]
    zerobinrep[x_]:=Module[{b},b=binrep[x];takelist[b,Range[2,Length[b],2]]]
    Table[frombinrep[Flatten[{onebinrep[n], zerobinrep[n]}]], {n,START,END}]-Table[frombinrep[Flatten[{zerobinrep[n], onebinrep[n]}]], {n,START,END}]
Showing 1-1 of 1 results.