cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175991 a(n) = binomial(binomial(binomial(n, 2), 3), 4)/5.

This page as a plain text file.
%I A175991 #13 Jun 26 2025 11:14:28
%S A175991 969,1642914,352470391,25957590316,958073067315,21639468423573,
%T A175991 337726148030733,3946787095970862,36534727415378192,
%U A175991 279109860906071195,1815047255456722287,10290566991057546557,51837653320551263438,235568544405588437778,977816056476957297015,3745739023587032569461,13356862465688668653111
%N A175991 a(n) = binomial(binomial(binomial(n, 2), 3), 4)/5.
%F A175991 From _R. J. Mathar_, Dec 08 2010: (Start)
%F A175991 a(n) = binomial(A093566(n+1),4)/5.
%F A175991 a(n) = n *(n-1) *(n-2) *(n-3) *(n+2) *(n+1) *(n^2-n-4) *(n^6-3*n^5-3*n^4+11*n^3+2*n^2-8*n-96) *(n^4-2*n^3+n^2+8) *(n^6-3*n^5-3*n^4+11*n^3+2*n^2-8*n-144) /637009920. (End)
%t A175991 Table[Binomial[Binomial[Binomial[n, 2], 3], 4]/5, {n, 4, 30}]
%Y A175991 Cf. A093566.
%K A175991 nonn
%O A175991 4,1
%A A175991 _Roger L. Bagula_, Dec 06 2010