A175994 Decimal expansion of the definite integral of y=x^(1/x) for x=0 to e, the only maximum of this graph.
2, 6, 6, 1, 8, 2, 5, 7, 0, 5, 3, 8, 0, 4, 1, 7, 8, 2, 8, 4, 9, 7, 0, 3, 9, 3, 3, 7, 6, 5, 1, 3, 9, 5, 8, 3, 0, 2, 1, 4, 9, 7, 0, 8, 2, 0, 9, 8, 3, 3, 0, 3, 5, 4, 8, 2, 1, 4, 6, 7, 8, 4, 8, 5, 0, 9, 1, 4, 7, 0, 2, 1, 0, 6, 5, 7, 1, 7, 5, 1, 6, 6, 2, 4, 6, 8, 2, 8, 2, 9, 3, 5, 6, 2, 4, 3, 5, 1, 4, 0
Offset: 1
Examples
2.6618257053804178284970393376513958302149708209833035482146784850914702106571...
Links
- J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see Figure 5.
Crossrefs
Cf. A073229 (decimal expansion of e^(1/e)).
Programs
-
Mathematica
RealDigits[ NIntegrate[ x^(1/x), {x, 0, E}, WorkingPrecision -> 105]][[1]] (* Jean-François Alcover, Nov 07 2012 *)