A332265 a(n) is the number of prime numbers created when concatenating all the arrangements of the decimal integers from 0 to 3*n+4.
20, 3202, 2056675, 3500185228
Offset: 0
Examples
a(0) = 20 as there are twenty primes created when concatenating the integer arrangements of 0,1,2,3,4. They are 1423, 2143, 2341, 4231, 10243, 12043, 20143, 20341, 20431, 23041, 24103, 30241, 32401, 40123, 40213, 40231, 41023, 41203, 42013, 43201. a(1) = 3202. The smallest prime created using integers 0..7 is 1234657 while the largest is 76540231. a(2) = 2056675. The smallest prime created using integers 0..10 is 10123457689 while the largest is 987654310021.
Programs
-
Mathematica
Table[Count[FromDigits /@ Flatten /@ IntegerDigits /@ Permutations[Range[0, 3 n + 4]], ?PrimeQ], {n, 0, 2}] (* _Robert Price, Sep 16 2020 *) (* OR, if the above runs low on memory to store all the Permutations at once... *) Table[p0 = Range[0, 3n+4]; p = NextPermutation[p0]; c = 0; While[p != p0, If[PrimeQ[FromDigits[Flatten[IntegerDigits /@ p]]], c++]; p = NextPermutation[p]]; c, {n, 0, 2}] (* Robert Price, Sep 16 2020 *)
Extensions
a(3) from Giovanni Resta, May 04 2020
Comments