cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176025 Series reversion of eta(-x) - 1.

This page as a plain text file.
%I A176025 #12 Oct 05 2022 08:29:12
%S A176025 1,1,2,5,15,49,169,603,2205,8217,31095,119185,461790,1805810,7117865,
%T A176025 28250549,112806534,452862663,1826705940,7399893522,30092189864,
%U A176025 122799412699,502709227763,2063939448400,8496355807149,35061664792175
%N A176025 Series reversion of eta(-x) - 1.
%C A176025 eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).
%H A176025 Vaclav Kotesovec, <a href="/A176025/b176025.txt">Table of n, a(n) for n = 0..500</a>
%F A176025 G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently:
%F A176025 x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n).
%F A176025 a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - _Vaclav Kotesovec_, Nov 11 2017
%e A176025 G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...
%e A176025 eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...
%e A176025 eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).
%p A176025 # Using function CompInv from A357588.
%p A176025 CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # _Peter Luschny_, Oct 05 2022
%t A176025 -InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* _Vladimir Reshetnikov_, Nov 21 2015 *)
%o A176025 (PARI) a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))),n)
%Y A176025 Cf. A010815.
%K A176025 nonn
%O A176025 0,3
%A A176025 _Paul D. Hanna_, Apr 06 2010