cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176035 Difference between product of two distinct primes and previous perfect square.

This page as a plain text file.
%I A176035 #10 Aug 25 2025 11:42:34
%S A176035 2,1,5,6,5,6,1,8,9,10,2,3,10,2,6,8,9,13,1,5,10,13,1,4,5,6,10,12,13,14,
%T A176035 6,11,15,18,19,1,2,8,12,13,20,21,22,1,2,11,14,15,17,22,8,9,14,16,18,
%U A176035 25,5,6,7,9,10,13,17,18,19,21,22,23,25,1,10,12,22,24,28,29,3,6,9,11,18,22,31
%N A176035 Difference between product of two distinct primes and previous perfect square.
%C A176035 6-4=2, 10-9=1, 14-9=5, 15-9=6, 21-16=5,..
%H A176035 G. C. Greubel, <a href="/A176035/b176035.txt">Table of n, a(n) for n = 1..5000</a>
%F A176035 a(n) = A053186(A006881(n)). - _R. J. Mathar_, Aug 25 2025
%t A176035 A006881=Sort@Flatten@Table[Prime[m]*Prime[n], {n, 2, 150}, {m, n-1}];
%t A176035 Table[A006881[[n]]-Floor[Sqrt[A006881[[n]]]]^2, {n, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 02 2011 *)
%o A176035 (Magma)
%o A176035 A006881:= [n: n in [1..1000] | EulerPhi(n) + DivisorSigma(1, n) eq 2*(n+1)];
%o A176035 [A006881[n] - Floor(Sqrt(A006881[n]))^2: n in [1..100]]; // _G. C. Greubel_, Oct 26 2022
%o A176035 (SageMath)
%o A176035 A006881=[n for n in (1..750) if euler_phi(n) + sigma(n,1) == 2*n+2]
%o A176035 [A006881[n] - isqrt(A006881[n])^2 for n in range(101)] # _G. C. Greubel_, Oct 26 2022
%Y A176035 Cf. A006881, A056892, A106044, A176032, A176033, A176034
%K A176035 nonn,changed
%O A176035 1,1
%A A176035 _Vladimir Joseph Stephan Orlovsky_, Apr 06 2010