This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176066 #16 Jun 28 2024 13:59:27 %S A176066 1,4,2,0,3,0,4,0,4,3,0,1,5,4,0,1,0,1,10,6,5,2,1,2,0,7,6,0,0,4,5,3,10, %T A176066 9,3,2,1,5,6,4,11,10,4,3,0,3,5,3,0,3,1,11,10,7,6,4,6,4,1,4,2,12,11,8, %U A176066 7,0,0,0,5,2,5,3,13,12,9,8,1,0,3,3,8,5,8,6,16,15,12,11,4,3,2 %N A176066 Triangle read by rows: R(n,k)=semiprime(n+1) mod (semiprime(k)+1), 1<=k<=n. %F A176066 R(n,k) = A001358(n+1) mod (1+A001358(k)). %e A176066 The triangle begins as: %e A176066 1; %e A176066 4, 2; %e A176066 0, 3, 0; %e A176066 4, 0, 4, 3; %e A176066 0, 1, 5, 4, 0; %e A176066 ... %p A176066 A176066 := proc(n,k) A001358(n+1) mod ( A001358(k)+1) ; end proc: %t A176066 Table[Mod[#[[n+1]], #[[;;n]]+1], {n, Length[#]-1}] & [Select[Range[50], PrimeOmega[#] == 2 &]] (* _Paolo Xausa_, Jun 28 2024 *) %o A176066 (PARI) trg(nn) = {semip = select(n->bigomega(n) == 2, vector(nn, i, i)); for (n = 1, #semip-1, for (k = 1, n, print1(semip[n+1] % (semip[k] + 1), ", ");););} \\ _Michel Marcus_, Sep 11 2013 %Y A176066 Cf. A000079, A001358, A174996. %K A176066 nonn,tabl %O A176066 1,2 %A A176066 _Juri-Stepan Gerasimov_, Dec 06 2010