This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176070 #21 Jun 01 2023 02:53:26 %S A176070 15,85,259,1111,4369,47989,65641,291919,2016379,2214031,3397651, %T A176070 3820909,5864581,9305311,13881841,15687751,16843009,19756171,22030681, %U A176070 28746559,62256349,64160401,74264821,79692331,101412319,117889591,172189309,185518471,191435329,270004099,328985791 %N A176070 Numbers of the form k^3+k^2+k+1 that are the product of two distinct primes. %C A176070 As k^3 + k^2 + k + 1 = (k + 1) * (k^2 + 1) and k <= 1 does not give a term, k + 1 and k^2 + 1 must be prime so k must be even. - _David A. Corneth_, May 30 2023 %F A176070 a(n) = (A070689(n + 1) + 1) * (A070689(n + 1)^2 + 1). - _David A. Corneth_, May 30 2023 %e A176070 15 is in the sequence as 15 = 3*5 = 2^3+2^2+2+1; 15 is a product of two distinct primes and of the form k^3 + k^2 + k + 1. %t A176070 f[n_]:=Last/@FactorInteger[n]=={1,1};Select[Array[ #^3+#^2+#+1&,7! ],f[ # ]&] %o A176070 (PARI) upto(n) = {my(res = List(), u = sqrtnint(n, 3) + 1); forprime(p = 3, u, c = (p-1)^2 + 1; if(isprime(c), listput(res, c*p))); res} \\ _David A. Corneth_, May 30 2023 %Y A176070 Cf. A002496, A006093, A006881, A053698, A070689, A174969, A176069, A237627 (semiprimes of that form). %K A176070 nonn %O A176070 1,1 %A A176070 _Vladimir Joseph Stephan Orlovsky_, Apr 07 2010 %E A176070 Name corrected by and more terms from _David A. Corneth_, May 30 2023