This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176079 #23 Sep 08 2022 08:45:52 %S A176079 0,0,1,0,-1,2,0,1,-1,3,0,-1,-1,-1,4,0,1,2,-1,-1,5,0,-1,-1,-1,-1,-1,6, %T A176079 0,1,-1,3,-1,-1,-1,7,0,-1,2,-1,-1,-1,-1,-1,8,0,1,-1,-1,4,-1,-1,-1,-1, %U A176079 9,0,-1,-1,-1,-1,-1,-1,-1,-1,-1,10,0,1,2,3,-1,5,-1,-1,-1,-1,-1,11 %N A176079 Triangle T(n,k) read by rows: If k divides n then k-1, otherwise -1. %H A176079 G. C. Greubel, <a href="/A176079/b176079.txt">Rows n = 1..100 of triangle, flattened</a> %F A176079 T(n,k) = -A191904(n,k) for n >= k. %F A176079 Sum_{k=1..n} T(n,k) = A001065(n). - _Jon E. Schoenfield_, Nov 29 2019 %e A176079 Table begins: %e A176079 0; %e A176079 0, 1; %e A176079 0, -1, 2; %e A176079 0, 1, -1, 3; %e A176079 0, -1, -1, -1, 4; %e A176079 0, 1, 2, -1, -1, 5; %e A176079 0, -1, -1, -1, -1, -1, 6; %e A176079 0, 1, -1, 3, -1, -1, -1, 7; %e A176079 0, -1, 2, -1, -1, -1, -1, -1, 8; %e A176079 0, 1, -1, -1, 4, -1, -1, -1, -1, 9; %p A176079 seq(seq( `if`(mod(n,k)=0, k-1, -1) , k=1..n), n=1..15); # _G. C. Greubel_, Nov 27 2019 %t A176079 Table[If[Divisible[n,k],k-1,-1],{n,15},{k,n}]//Flatten (* _Harvey P. Dale_, May 20 2016 *) %o A176079 (PARI) T(n,k)= if(Mod(n,k)==0, k-1, -1); \\ _G. C. Greubel_, Nov 27 2019 %o A176079 (Magma) [(n mod k) eq 0 select k-1 else -1: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Nov 27 2019 %o A176079 (Sage) %o A176079 def T(n, k): %o A176079 if (mod(n,k)==0): return k-1 %o A176079 else: return -1 %o A176079 [[T(n, k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Nov 27 2019 %o A176079 (GAP) %o A176079 T:= function(n,k) %o A176079 if (n mod k = 0) then return k-1; %o A176079 else return -1; %o A176079 fi; end; %o A176079 Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 27 2019 %Y A176079 Cf. A001065 (row sums), A191904. %K A176079 sign,tabl %O A176079 1,6 %A A176079 _Mats Granvik_, Apr 08 2010