A176097 Degree of the hyperdeterminant of the cubic format (k+1) X (k+1) X (k+1).
1, 4, 36, 272, 2150, 16992, 134848, 1072192, 8536914, 68036600, 542607560, 4329671040, 34561892560, 275979195520, 2204266118400, 17609217372416, 140698273234634, 1124340854572296, 8985828520591912, 71822662173752800
Offset: 0
Examples
For k=1, the hyperdeterminant of the matrix (a_ijk) (for 0 <= i,j,k <= 1) is (a_000 * a_111)^2 + (a001 * a110)^2 + (a_010 * a_101)^2 + (a_011 * a_100)^2 -2(a_000 * a_001 * a_110 * a_111 + a_000 * a_010 * a_101 * a_111 + a_000 * a_011 * a_100 * a_111 + a_001 * a_010 * a_101 * a_110 + a_001 * a_011 * a_110 * a_100 + a_010 * a_011 * a_101 * a_100) + 4(a_000 * a_011 * a_101 * a_110 + a_001 * a_010 * a_100 * a_111) (see Gelfand, Kapranov & Zelevinsky, pp. 2 and 448.) [Corrected by _Petros Hadjicostas_, Sep 12 2019]
References
- I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, 2008, p. 456 (Ch. 14, Corollary 2.9).
Links
- Arthur Cayley, On the theory of linear transformations, The Cambridge Mathematical Journal, Vol. IV, No. XXIII, February 1845, pp. 193-209. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Arthur Cayley, On the theory of linear transformations, The collected mathematical papers of Arthur Cayley, Cambridge University Press (1889-1897), pp. 80-94. [Accessible through the University of Michigan Historical Math Collection; click on pp. 80 through 94.]
- Arthur Cayley, On linear transformations, Cambridge and Dublin Mathematical Journal, Vol. I, 1846, pp. 104-122. [Accessible only in the USA through the Hathi Trust Digital Library.]
- Arthur Cayley, On linear transformations, The collected mathematical papers of Arthur Cayley, Cambridge University Press (1889-1897), pp. 95-112. [Accessible through the University of Michigan Historical Math Collection; click on pp. 95 through 112.]
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Advances in Mathematics 96(2) (1992), 226-263; see Corollary 3.9 (p. 246).
- David G. Glynn, The modular counterparts of Cayley's hyperdeterminants, Bulletin of the Australian Mathematical Society 57(3) (1998), 479-492.
- Giorgio Ottaviani, Luca Sodomaco, and Emuanuele Ventura, Asymptotics of degrees and ED degrees of Segre products, arXiv:2008.11670 [math.AG], 2020.
- Ludwig Schläfli, Über die Resultante eines Systemes mehrerer algebraischen Gleichungen, ein Beitrag zur Theorie der Elimination, Denkschr. der Kaiserlicher Akad. der Wiss. math-naturwiss. Klasse, 4 Band, 1852.
- Eric Weisstein's World of Mathematics, Hyperdeterminant.
- Wikipedia, Hyperdeterminants.
Programs
-
Maple
a:= k-> add((j+k+1)! /(j!)^3 /(k-2*j)! *2^(k-2*j), j=0..floor(k/2)): seq(a(n), n=0..20); # Second program: a := proc(n) option remember; if n = 0 then return 1 elif n = 1 then return 4 fi; (a(n-1)*(21*n^3-10*n^2-9*n+6)+a(n-2)*(24*n^3+16*n^2))/((3*n-1)*n^2) end: seq(a(n), n=0..19); # Peter Luschny, Sep 12 2019
-
Mathematica
Table[Sum[(j + n + 1)!*2^(n - 2*j)/(j!^3*(n - 2*j)!), {j, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 12 2019 *)
Formula
a(n) = Sum_{j = 0..n/2} ( (j+n+1)! * 2^(n-2j) )/((j!)^3 * (n-2j)!).
G.f.: hypergeom([-1/3, 1/3],[1],27*x^2/(1-2*x)^3)*(1-2*x)/((x+1)^2*(1-8*x)). - Mark van Hoeij, Apr 11 2014
a(n) ~ 8^(n+1) / (Pi * 3^(3/2)). - Vaclav Kotesovec, Sep 12 2019
a(n) = (a(n-1)*(21*n^3 - 10*n^2 - 9*n + 6) + a(n-2)*(24*n^3 + 16*n^2))/((3*n - 1)*n^2) for n >= 2. - Peter Luschny, Sep 12 2019