This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176120 #39 Aug 11 2022 03:40:52 %S A176120 1,1,2,1,3,7,1,4,13,34,1,5,21,73,209,1,6,31,136,501,1546,1,7,43,229, %T A176120 1045,4051,13327,1,8,57,358,1961,9276,37633,130922,1,9,73,529,3393, %U A176120 19081,93289,394353,1441729,1,10,91,748,5509,36046,207775,1047376,4596553,17572114 %N A176120 Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!. %C A176120 The number of ways of placing any number k = 0, 1, ..., min(n,m) of non-attacking rooks on an n X m chessboard. - _R. J. Mathar_, Dec 19 2014 %C A176120 Let a be a partial permutation in S the symmetric inverse semigroup on [n] with rank(a) := |image(a)| = m. Then T(n,m) = |aS| where |aS| is the size of the principal right ideal generated by a. - _Geoffrey Critzer_, Dec 21 2021 %D A176120 O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46. %H A176120 Seiichi Manyama, <a href="/A176120/b176120.txt">Rows n = 0..139, flattened</a> %H A176120 Wikipedia, <a href="http://en.wikipedia.org/wiki/Rook_polynomial">Rook polynomial</a> %F A176120 Sum_{k=0..n} T(n, k) = A129833(n). %F A176120 T(n,m) = A088699(n, m). - _Peter Bala_, Aug 26 2013 %F A176120 T(n,m) = A086885(n, m). - _R. J. Mathar_, Dec 19 2014 %F A176120 From _G. C. Greubel_, Aug 11 2022: (Start) %F A176120 T(n, k) = Hypergeometric2F1([-n, -k], [], 1). %F A176120 T(2*n, n) = A082545(n). %F A176120 T(2*n+1, n) = A343832(n). %F A176120 T(n, n) = A002720(n). %F A176120 T(n, n-1) = A000262(n), n >= 1. %F A176120 T(n, 1) = A000027(n+1). %F A176120 T(n, 2) = A002061(n+1). %F A176120 T(n, 3) = A135859(n+1). (End) %e A176120 Triangle begins %e A176120 1; %e A176120 1, 2; %e A176120 1, 3, 7; %e A176120 1, 4, 13, 34; %e A176120 1, 5, 21, 73, 209; %e A176120 1, 6, 31, 136, 501, 1546; %e A176120 1, 7, 43, 229, 1045, 4051, 13327; %e A176120 1, 8, 57, 358, 1961, 9276, 37633, 130922; %e A176120 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729; %e A176120 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114; %e A176120 1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231; %p A176120 A176120 := proc(i,j) %p A176120 add(binomial(i,k)*binomial(j,k)*k!,k=0..j) ; %p A176120 end proc: # _R. J. Mathar_, Jul 28 2016 %t A176120 T[n_, m_]:= T[n,m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}]; %t A176120 Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten %o A176120 (Magma) %o A176120 A176120:=func< n,k| (&+[Factorial(j)*Binomial(n,j)*Binomial(k,j): j in [0..k]]) >; %o A176120 [A176120(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 11 2022 %o A176120 (SageMath) %o A176120 def A176120(n,k): return sum(factorial(j)*binomial(n,j)*binomial(k,j) for j in (0..k)) %o A176120 flatten([[A176120(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 11 2022 %Y A176120 Cf. A086885 (table without column 0), A129833 (row sums). %Y A176120 Cf. A000262, A002061, A002720, A082545, A135859, A343832. %K A176120 nonn,easy,tabl %O A176120 0,3 %A A176120 _Roger L. Bagula_, Apr 09 2010