This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176137 #12 Nov 18 2021 12:18:38 %S A176137 1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, %T A176137 0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,1,1,1,1,0,0,0, %U A176137 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A176137 Number of partitions of n into distinct Catalan numbers, cf. A000108. %C A176137 a(n) <= 1; %C A176137 a(A000108(n)) = 1; a(A141351(n)) = 1; a(A014138(n)) = 1. %C A176137 A197433 gives all such numbers k that a(k) = 1, in other words, this is the characteristic function of A197433, and all three sequences mentioned above are its subsequences. - _Antti Karttunen_, Jun 25 2014 %H A176137 Reinhard Zumkeller, <a href="/A176137/b176137.txt">Table of n, a(n) for n = 0..10000</a> %F A176137 a(n) = f(n,1,1) with f(m,k,c) = if c>m then 0^m else f(m-c,k+1,c') + f(m,k+1,c') where c'=2*c*(2*k+1)/(k+2). %e A176137 56 = 42+14 = A000108(5)+A000108(4), all other sums of distinct Catalan numbers are not equal 56, therefore a(56)=1. %t A176137 nmax = 104; %t A176137 A197433 = CoefficientList[(1/(1 - x))*Sum[ CatalanNumber[k + 1]*x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, nmax] // Ceiling}] + O[x]^nmax, x]; %t A176137 a[n_] := Boole[MemberQ[A197433, n]]; %t A176137 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Nov 18 2021, after _Ilya Gutkovskiy_ in A197433 *) %o A176137 (Scheme) (define (A176137 n) (if (zero? n) 1 (- (A244230 (+ n 1)) (A244230 n)))) ;; _Antti Karttunen_, Jun 25 2014 %Y A176137 When right-shifted (prepended with 1) this sequence is the first differences of A244230. %Y A176137 Cf. A033552, A197433, A161227 - A161239. %K A176137 nonn %O A176137 0,1 %A A176137 _Reinhard Zumkeller_, Apr 09 2010