This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176156 #18 Sep 08 2022 08:45:52 %S A176156 1,1,1,1,3,1,1,10,10,1,1,25,67,25,1,1,51,281,281,51,1,1,91,646,1036, %T A176156 646,91,1,1,148,-1217,-12536,-12536,-1217,148,1,1,225,-31079,-287223, %U A176156 -548785,-287223,-31079,225,1,1,325,-342899,-3906899,-11000741,-11000741,-3906899,-342899,325,1 %N A176156 Regular triangle, T(n, k) = f(n, k) - f(n, 0) + 1, where f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS2(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS2(n, n-j)*binomial(n, j), read by rows. %C A176156 Row sum are: {1, 2, 5, 22, 119, 666, 2512, -27208, -1184937, -30500426, -716845999, ...}. %H A176156 G. C. Greubel, <a href="/A176156/b176156.txt">Rows n = 0..100 of triangle, flattened</a> %F A176156 With f(n, k) = Sum_{j=0..k} (-1)^j*StirlingS1(n, n-j)*binomial(n,j) + Sum_{j=0..n-k} (-1)^j*StirlingS1(n, n-j)*binomial(n, j) then T(n, k) = f(n, k) - f(n, 0) + 1. %e A176156 Triangle begins as: %e A176156 1; %e A176156 1, 1; %e A176156 1, 3, 1; %e A176156 1, 10, 10, 1; %e A176156 1, 25, 67, 25, 1; %e A176156 1, 51, 281, 281, 51, 1; %e A176156 1, 91, 646, 1036, 646, 91, 1; %e A176156 1, 148, -1217, -12536, -12536, -1217, 148, 1; %e A176156 1, 225, -31079, -287223, -548785, -287223, -31079, 225, 1; %p A176156 with(combinat); %p A176156 f:= proc(n, k) option remember; add((-1)^j*stirling1(n, n-j)*binomial(n, j), j=0..k) + add((-1)^j*stirling1(n, n-j)* binomial(n, j), j=0..n-k); end; %p A176156 seq(seq(f(n,k) -f(n,0) +1, k=0..n), n=0..10); # _G. C. Greubel_, Nov 26 2019 %t A176156 f[n_, k_]:= Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,k}] + Sum[(-1)^j*StirlingS1[n, n-j]*Binomial[n, j], {j,0,n-k}]; %t A176156 Table[f[n, k] - f[n, 0] + 1, {n,0,10}, {k,0,n}]//Flatten %o A176156 (PARI) %o A176156 f(n,k) = sum(j=0,k, (-1)^j*stirling(n,n-j,1)*binomial(n,j)) + sum(j=0,n-k, (-1)^j*stirling(n, n-j,1)*binomial(n,j)); %o A176156 T(n,k) = f(n,k) - f(n,0) + 1; \\ _G. C. Greubel_, Nov 26 2019 %o A176156 (Magma) %o A176156 f:= func< n,k | (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..k]]) + (&+[(-1)^j*StirlingFirst(n,n-j)*Binomial(n,j): j in [0..n-k]]) >; %o A176156 [f(n,k) - f(n,0) + 1: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 26 2019 %o A176156 (Sage) %o A176156 def f(n, k): return sum(stirling_number1(n,n-j)*binomial(n,j) for j in (0..k)) + sum(stirling_number1(n, n-j)*binomial(n,j) for j in (0..n-k)) %o A176156 [[f(n, k)-f(n,0)+1 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 26 2019 %o A176156 (GAP) %o A176156 f:= function(n,k) return Sum([0..k], j-> Stirling1(n,n-j)*Binomial(n,j)) + Sum([0..n-k], j-> Stirling1(n, n-j)*Binomial(n,j)); end; %o A176156 Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n,0)+1 ))); # _G. C. Greubel_, Nov 26 2019 %Y A176156 Cf. A048994, A132393, A176153, A176154, A176155, A176157. %K A176156 sign,tabl %O A176156 0,5 %A A176156 _Roger L. Bagula_, Apr 10 2010 %E A176156 Name edited by _G. C. Greubel_, Nov 26 2019