This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176197 #4 May 17 2023 10:11:48 %S A176197 354,723,898,963,978,1394,1569,1634,1649,1938,2003,2018,2178,2193, %T A176197 2258,2499,2674,2739,2754,3043,3108,3123,3283,3298,3363,3714,3779, %U A176197 3794,3954,3969,4034,4194,4323,4338,4369,4403,4434,4449,4578,4738,4803,4818,4978 %N A176197 Sum of 4 distinct nonzero fourth powers. %C A176197 1^4+2^4+3^4+4^4=354, 1^4+2^4+3^4+5^4=723, .., 2^4+3^4+4^4+5^4=978,.. %H A176197 <a href="http://www.sciencedaily.com/releases/2008/03/080314145039.htm">Part of "Euler's Equation of degree four"</a> %p A176197 # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<b<c<d. %p A176197 A176197 := proc(n) %p A176197 local a,i,j,k,l,res ; %p A176197 a := 0 ; %p A176197 for i from 1 do %p A176197 if i^4 > n then %p A176197 break ; %p A176197 end if; %p A176197 for j from i+1 do %p A176197 if i^4+j^4 > n then %p A176197 break ; %p A176197 end if; %p A176197 for k from j+1 do %p A176197 if i^4+j^4+k^4> n then %p A176197 break; %p A176197 end if; %p A176197 res := n-i^4-j^4-k^4 ; %p A176197 if issqr(res) then %p A176197 res := sqrt(res) ; %p A176197 if issqr(res) then %p A176197 l := sqrt(res) ; %p A176197 if l > k then %p A176197 a := a+1 ; %p A176197 end if; %p A176197 end if; %p A176197 end if; %p A176197 end do: %p A176197 end do: %p A176197 end do: %p A176197 a ; %p A176197 end proc: %p A176197 for n from 1 do %p A176197 if A176197(n) > 0 then %p A176197 print(n) ; %p A176197 end if; %p A176197 end do: # _R. J. Mathar_, May 17 2023 %t A176197 lst={};Do[Do[Do[Do[AppendTo[lst,a^4+b^4+c^4+d^4],{d,c+1,11}],{c,b+1,10}],{b,a+1,9}],{a,1,8}];Sort@lst %Y A176197 Subsequence of A003338. %K A176197 nonn %O A176197 1,1 %A A176197 _Vladimir Joseph Stephan Orlovsky_, Apr 11 2010