This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176208 #8 Apr 22 2023 00:23:41 %S A176208 2,2,3,2,2,3,3,4,2,3,2,3,3,4,4,5,2,2,3,3,4,2,3,3,4,3,4,5,4,5,6,2,3,2, %T A176208 3,3,4,3,4,5,2,3,3,4,3,4,5,4,4,5,6,5,6,7,2,2,3,3,4,2,3,3,4,3,4,5,4,4, %U A176208 5,6,2,3,3,4,3,4,5,3,4,4,5,6,4,5,5,6,7,5,6,7,8 %N A176208 An irregular table with shape sequence A058884 measuring the length of ordered partitions defined by A176207. %H A176208 Andrew Howroyd, <a href="/A176208/b176208.txt">Table of n, a(n) for n = 3..5555</a> (rows 3..20) %e A176208 A058884 begins -1 0 0 1 2 5 8 15 ..., counting %e A176208 12 %e A176208 13 121 %e A176208 23 14 131 122 1211 %e A176208 ... %e A176208 so triangle T(n,k) begins: %e A176208 2; %e A176208 2, 3; %e A176208 2, 2, 3, 3, 4; %e A176208 2, 3, 2, 3, 3, 4, 4, 5; %e A176208 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 5, 6; %e A176208 ... %o A176208 (PARI) %o A176208 L(n,k)={vecsort([Vecrev(p) | p<-partitions(k), p[#p] > n-k], , 4)} %o A176208 row(n)={ concat(vector(n-1, k, [#p + 1 | p<-L(n,k)])) } %o A176208 for(n=3, 8, print(row(n))) \\ _Andrew Howroyd_, Apr 21 2023 %Y A176208 Cf. A058884 (row lengths), A176206, A176207. %K A176208 nonn,tabf,uned %O A176208 3,1 %A A176208 _Alford Arnold_, Apr 12 2010 %E A176208 Terms a(34) and beyond from _Andrew Howroyd_, Apr 21 2023